《美科学家发现抑制肥胖新方法》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-03-15
  • 人体内的白色脂肪储存过多热量,与肥胖密切相关;而棕色脂肪燃烧卡路里以产生热量,已成为消除肥胖的潜在手段。美国布朗大学科学家发现一种叫做SNRK的酶能够抑制白色脂肪中的炎症,同时提高棕色脂肪代谢,SNRK成为抑制肥胖的研究对象。

    研究人员认为,如果能找到一种方法来提高脂肪组织SNRK的含量,那么可能会有双重好处——减少白色脂肪中的炎症可以缓解相关的并发症,如胰岛素抵抗,而增加棕色脂肪代谢可有助于减轻体重,但还须进一步人体研究来证实这些可能性。研究论文发表在《糖尿病》杂志上。

    在该项研究中,科学家培育出脂肪细胞中缺乏SNRK基因的小鼠,并与正常小鼠对比脂肪组织。研究表明,缺乏SNRK基因的小鼠在白色脂肪组织中的巨噬细胞浓度更高,证明炎症更多,而之前的研究显示,白色脂肪中的炎症与胰岛素抵抗有关,后者是引发糖尿病的危险因素。该研究还显示缺乏SNRK基因的小鼠比正常小鼠重,且总体代谢率较低,即使通过激活棕色脂肪诱导啮齿动物体重减轻的药物进行治疗也无明显效果。这表明,缺乏SNRK基因的小鼠代谢率较低和体重增加是由于棕色脂肪代谢减少造成的。

    研究中包含的初步遗传学证据表明,SNRK酶在人体中发挥着类似功能,使其可能成为遏制肥胖及其并发症的新疗法。研究团队希望加快多学科合作进程,将实验室发现转化为新的治疗或干预手段。

  • 原文来源:http://news.bioon.com/article/6718967.html
相关报告
  • 《科学家发现产生高温超导体的新方法》

    • 来源专题:重大科技基础设施领域知识集成服务平台
    • 编译者:魏韧
    • 发布时间:2019-06-27
    • 20世纪80年代,铜氧化物高温超导体的发现推翻了一种广为流行的理论,即超导体材料仅在约30开尔文(或零下406华氏度)的极低温度下无电阻。几十年来,研究人员一直在关注100开尔文(零下280华氏度)以上的铜酸盐超导体研究。现在美国能源部劳伦斯伯克利实验室的科学家找到了这一问题的答案——电子自旋。相关成果将发表在12月13日的《科学》杂志上。 1、在旋转方式中添加电子自旋 每一个电子都像一个指向某个方向的微小磁铁。大多数超导体材料中的电子似乎都遵循着自己的旋转方向。它们的电子不是指向同一个方向,而是不规则地向某一个方向旋转——有的向上,有的向下,有的向左或向右。 当开发新的材料时,科学家们会观察材料的电子自旋。但是,当制造超导体时,凝聚态物理学家传统上并不关注自旋,因为传统观点认为这些材料的独特性是通过两个电子相互作用的方式,即“电子关联”形成的。但该研究用一种称为SARPES(s)的技术,发现一些超导体材料中存在电子自旋的特殊模式。 2、高温超导体的新图谱 材料在高于预期的温度下,或远低于零华氏度的极冷温度下出现超导,是因为只有在这样的条件下才能在没有任何阻碍地输送电子,此时电子能够同步运动,而不会被摇摆的原子撞击,进而产生电阻。在这类特殊的高温超导体材料中,铜酸盐的表现最好,一些研究人员相信,铜酸盐有可能成为制作新型超高效电线的材料。 凝聚态物理学家在研究的超导材料中发现了电子关联。其实还存在另一种电子相互作用方式,“自旋-轨道耦合”,即电子的磁矩与材料中的原子相互作用。许多人认为,与“电子关联相比”,铜酸盐超导体中的“自旋-轨道耦合”很弱,所以常常被忽略。 3、用SARPES发现电子自旋 SARPES探测器由Lanzara、Zahid Hussain和Chris Zzwiak共同开发。科学家用其探测电子的关键特性,如价带结构。科学家使用SARPES与ALS的10.0.1光束,探测到电子的自旋速度,发现bi-2212独特的自旋模式,即“非零自旋”。
  • 《科学家找到提取锂的新方法》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2024-12-09
    • 如今,作为电动汽车制造、航空航天等许多领域必不可少的关键金属,锂被称为“白金”“白色石油”。据《科学》报道,近期的一系列研究成果有望实现锂的高效、低能耗、绿色提取。 全球锂资源供不应求。目前大部分锂开采自智利、阿根廷、玻利维亚等地巨大的含锂盐水蒸发池。人们通过日照蒸发水分并浓缩锂离子,然后向其中添加化学物质,使锂以固体碳酸锂的形式析出。然而,采用这种提取方法仅蒸发这一步就需要一年多时间,并且绵延数百平方公里的蒸发池大多设在沙漠中,建造和维护成本高昂。 为解决上述问题,研究人员一直在探索高效、低能耗、绿色的锂资源开采方法。例如用电力替代太阳光,该方法通常会设置两个装有电极的腔室,一个充满盐水,另一个充满纯净水,两个腔室由一层只允许某些特定离子通过的膜隔开。纯水腔室中的水分子电离产生氢气和氢氧根离子,这些带负电的离子会吸引盐水腔室中带正电的锂离子,并使其穿过膜。同时,在盐水腔室一侧,水在电极上失去电子,最终产生氧气。如此循环往复,直至纯水腔室中的锂浓度足够大而沉淀出来。 这个方法并不新鲜,但存在两个弊端。一是该装置需要消耗大量电力,且大部分用在形成氧气的非常缓慢的反应上;二是盐水腔室会缓慢反应生成有毒的氯气。 如今,美国斯坦福大学材料科学家崔屹等人开发了一种缓解上述问题的方法,即在锂离子被吸引到纯水腔室时,捕获该腔室产生的氢气,并将其输送到掺有氢氧化钠的盐水腔室。这种廉价添加剂释放的氢氧根离子,只需要很小的电压就可以与注入的氢气反应并形成水。该方法将整个装置的电力需求减少了80%,并从一开始就防止了氧气的形成。此外,上述快速反应还可以防止有毒氯气的生成。相关研究成果近日发表于《物质》。 崔屹团队此前曾利用银电极开发了一种能一边发电一边提取锂的装置。虽然该装置提取锂的速度大约只有新方法的一半,但增加了锂提取有一天成为负碳过程的可能性。 在另一项研究中,美国莱斯大学的工程师Lisa Biswal和同事开发了一种3腔室装置,也同样能够抑制有毒氯气的产生。相关研究近期发表于美国《国家科学院院刊》。 研究人员将盐水腔室设置在两个装有电极的纯水腔室之间,3个腔室通过离子膜分隔。Biswal说,锂离子在通电后最终会集中在其中一个纯水腔室中,离子膜则使氯离子保留在中间的盐水腔室中,从而防止它们遇到纯水腔室中的电极而生成氯气。 “如果我们能实现更快、更高效、低能耗的采集,那么就会有足够的锂满足我们的所有需求。”Biswal说。(徐锐) 相关论文信息: https://doi.org/10.1073/pnas.2410033121