《宁波材料所在太阳能界面光热转化及多介质纯化方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-03-20
  • 统的分离与纯化技术是一个高能耗、高成本的过程,在当前能源危机和环境压力不断增加的情况下,急需革新技术以突破能耗障碍。太阳能是一种清洁、可再生能源,高效开发和利用太阳能得到全世界的重视,也是我国可持续发展战略的重要内容。太阳能光热蒸发技术因其可持续、低/无能耗、零CO2排放等特点,近年来成为分离领域的研究热点,在海水淡化、污水净化等方面展现出巨大应用潜力。其中光热转化材料是该技术的核心,主要包括等离激元材料、碳纳米材料和半导体材料三类材料,然而制备复杂、成本高、稳定性低等是当前限制光热材料推广和阻碍光热技术发展的主要原因,因此研发高转化效率、低成本、高稳定性和普适性的光热转化材料显得尤为重要和迫切。   近日,中国科学院宁波材料技术与工程研究所刘富研究员团队在前期光热材料多介质纯化应用研究的基础上(J. Mater. Chem. A 2019, 7, 586-593),发展了一种低成本的全生物质光热蒸馏器,并实现了从多种含水介质中提取纯水。基于水稻秸秆生物质,通过限氧裂解方法得到多孔碳基光吸收材料,并与细菌纤维素复合制得高稳定性、高机械强度的光热蒸发膜,太阳光吸收达89.4%。同时利用秸秆生物质的空腔结构作为汲水通道和支撑体来构筑界面蒸发系统,水稻秸秆独特的毛细内腔和壁面多级微纳结构赋予该原生通道优异的无障碍供水能力。由光热蒸发膜和汲水通道组装成的全生物质光热蒸馏器,用于模拟海水淡化装置进行连续室外运行,在晴天和多云天气下日产水量分别为6.4~7.9kgm-2和4.6~5.6kgm-2,且直接达到饮用标准(盐离子去除率保持在99.9%以上)。除了适用于海水淡化,该生物质光热蒸馏器还可从滩涂、湿地、沼泽等含水介质中稳定提取纯净水,展现出良好的普适性。相关工作发表在ACS Appl. Mater. Interfaces. 2019, DOI: 10.1021/acsami.9b00291,该工作得到阿卜杜拉国王科技大学Peng Wang教授的合作支持。   除了水溶液,研究团队针对有机溶剂体系的分离与纯化,进一步研发了耐溶剂光热材料,首次系统性研究了太阳能光热蒸发技术在有机溶剂纯化中的应用。普鲁士蓝(PB)是一类典型的Fe2+-C≡N-Fe3+面心立方晶配位聚合物,具有优异的水溶液和有机溶剂稳定性,晶体内Fe2+和Fe3+可发生电荷转移赋予PB特定的光热效应,然而结晶度和晶体空位是影响PB光热转化效率的关键因素。课题组基于单一铁源,通过慢速结晶的配位聚合,合成低空位率、高结晶度的普鲁士蓝(PB)纳米立方晶体(如图2),并通过原位生长将其负载在同样耐溶剂的棉纤维(CF)基体上,载量可控且结合稳定。制备的PB@CF复合纤维材料综合了光热转化和溶剂自汲取功能,光吸收达到93.7%;成功应用于水和一系列有机溶剂(介电常数2.38~37.78)的光热纯化,在保持99.9%去除率的前提下,蒸发通量从丙酮的29.2 Lm-2h-1到N-甲基吡咯烷酮的0.73Lm-2h-1不等(一个太阳下),与溶剂蒸发焓成显著负相关。对部分有机溶剂的纯化效率与传统压力驱动的耐有机溶剂纳滤膜相当。此外对高极性溶剂(DMAC)呈现出稳定的光热蒸发性能,对DMAC溶剂纯化运行3个月仍可保持稳定蒸发速率。该研究结果有望应用于化工和医药领域的溶剂体系分子筛分、溶剂回收、催化剂循环利用等,相关工作发表在J. Mater. Chem. A 2019, DOI: 10.1039/C9TA00798A。   以上工作得到国家自然科学基金委面上项目(51603209),国家自然科学基金委与香港研究资助局联合项目(5161101025、N-HKU706/16)以及宁波市科技局(2017C110034)等项目支持。

相关报告
  • 《宁波材料所在光热转化碳纤维用于多介质纯化方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-12-17
    • 太阳能作为一种清洁可持续的绿色能源成为近年来能源转化利用的焦点,已经被广泛应于光伏发电、光催化及光热转化等领域。其中利用光热转化原理进行海水淡化,是一种低成本、低维护的海水淡化技术。目前的光热转化材料主要有碳基材料、等离激元材料以及半导体材料等,上述材料由于其自身的物理化学稳定性,在高盐雾、高温度、高湿度以及高腐蚀等极端环境下存在应用局限,比如高盐海水(10wt%)、苦咸水、强极性有机溶剂、油水乳液等多介质的分离及纯化等。   为解决上述问题,中国科学院宁波材料技术与工程研究所先进功能膜团队刘富研究员设计并制备了一种具有超稳定环境耐受性的碳纤维材料,用于光热转化多介质纯化。研究团队通过水热合成技术在碳纤维表面引入稳定的碳层,提高表面粗糙度,比表面积增加到0.5m2g,在波长为200-2500nm的光吸收由改性前的89%提升到97%;并且碳化改性过程中有部分极性官能团引入,改性后的碳纤维的表面极性提高,极性表面能提高到20mM/m,使得碳纤维能够依靠纤维之间的毛细力对液体(水或者有机溶剂)进行自提取,不需要附加额外的汲取材料,简化了太阳能蒸发器件的设计。编织后的碳纤维层可直接作为汲水及光热转化层进行多种介质的纯化。   实验结果表明,碳化改性后的碳纤维的光热转化效率可达到92.5%,在一个标准太阳下对海水的光热转化速率达到1.47Kgm-2h-1,在五个标准太阳下光热转化速率为~5.86Kgm-2h-1,并且对高盐海水(模拟死海海水,盐浓度10wt%)具有长期稳定的脱盐效果,碳纤维蒸馏器在室外连续运行10天,每天的产水量稳定在~7Kgm-2,并保持稳定的机械强度。由于碳纤维丰富的多级纤维结构及良好的毛细汲水能力,对于高盐海水在纤维表面的结晶具有良好的溶解及自修复能力,结晶析出在碳纤维表面的盐经过一晚上静置,会重新溶解到海水中,从而不会影响碳纤维的光热转化效果。此外,改性后的碳纤维对于水包油乳液(非挥发性硅油)具有良好的去除效果,水中硅油含量可由10000ppm降低到11.9ppm;可对印染行业中含染料的有机溶剂如二甲基乙酰胺进行纯化,表现出良好的脱色及纯化效果,染料去除率达99.99%,蒸发速率为0.98Kgm-2h-1,并且可以长期耐受强极性有机溶剂二甲基乙酰胺(浸泡10天),其机械强度不发生变化。   上述结果表明碳化改性碳纤维材料,在多介质纯化领域具有广阔的应用前景,如高盐海水脱盐,有机溶剂脱色,油水乳液脱油等,大大拓展了目前碳纤维以及光热转化材料在溶剂纯化方面的应用领域。该成果以“Ultra-robust carbon fibers for multi-media purification via solar-evaporation”为题发表在Journal of Materials Chemistry A (DOI: 10.1039/c8ta08829b)。博士生李田田和方齐乐副研究员为该论文的共同第一作者,刘富研究员为该论文的通讯作者。全文链接:https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta08829b#!divAbstract   上述研究工作得到了国家自然科学基金(51673209, 5161101025)、中国科学院青促会(2014258)、宁波市科技局(2014B81004, 2017C110034)等项目的支持,并感谢特纤事业部陈友汜研究员和博士生席先锋对该工作的大力支持,。
  • 《宁波材料所在铁兰启发的有机凝胶进行光热空气集水方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-08-31
    • 淡水资源短缺问题日益制约着社会的发展甚至威胁着人类的生存,已成为当今社会亟需解决的难题之一。传统的淡水制备通常需要大量的能源供应及复杂庞大的设备要求,因此很难普及。近年来,作为一种简单、有效的途径,通过合理设计的光热蒸发器利用绿色、可持续的太阳能来驱动丰富的海水资源转变成淡水已成为研究的热点。中国科学院宁波材料技术与工程研究所陈涛研究员、肖鹏副研究员前期发展了一系列用于光热淡水收集的高分子复合材料(Nano Energy, 2020, 68, 104311; Nano Energy, 2020, 68, 104385; ACS Sustain. Chem. Eng., 2020, 8, 13, 5328; Nano Energy 2019, 60, 841; ACS Appl. Mater. Inter. 2019, 11, 15498; Solar RRL 2019, 3, 1900004等)。除了丰富的海水资源,地球大气中也存在着巨大的水汽资源(约50000 km3),虽广泛分布缺很少被利用。通过材料在空气中吸湿,进而在太阳能作用下实施光热蒸发,以实现空气集水的技术正在兴起。 铁兰属植物(Tillandsia Species)是一类典型的附生植物,其生存不依靠根茎从土壤中吸收水分,而通过其叶片直接从空气中吸收水分即能很好存活。在叶片内部渗透压的作用下,被吸附的水分可实现从最外组织到内部网络定向运输,并最终储存在叶片内部完善的组织系统内,以实现连续、快速的水分吸收(图1)。 受此启发,研究人员提出了一种吸湿型光热有机凝胶(POG),以实现太阳能驱动的光热空气制水。聚甲基丙烯酸钠/丙烯酰胺的亲水性共聚高分子水凝胶网络可以将吸湿性的有机溶剂(甘油)容纳其中。类似于铁兰植物,POG内吸湿性的甘油介质在渗透压的作用下赋予其内部快速的水扩散,并通过聚合物链溶胀的形式将水储存在其内部,最终实现POG连续、快速、高容量的吸湿性能。另外,通过实验证明和理论分析,聚合物网络上亲水性的官能团也能协同增强POG的吸湿行为。最终,在90%的相对湿度下,该POG在12小时内展现出6.12 kg/m2的吸湿性能,并具有16.01 kg/m2的超高平衡水分吸附(图2-3)。另外,互穿的光热高分子网络聚吡咯-多巴胺(P-Py-DA)赋予POG优秀的光热性能,可以实现可控的太阳能驱动的界面水分释放,以获取被吸附的水分(图4a-b)。户外实验结果表明,该POG在实际的室外实验中淡水日产量达到2.43 kg/m2,且收集到的淡水中的离子浓度的含量完全符合WHO和EPA的饮用水标准(图4c-g)。本研究为太阳能光热空气集水提供了一种新的材料体系,且该有机凝胶的聚合物骨架和吸湿介质的选择具有高度可设计性,后期可通过更合理的设计进一步的提高其空气制水性能。 该工作以题为“Tillandsia-inspired Hygroscopic Photothermal Organogels for Efficient Atmospheric Water Harvesting”的论文发表在Angew. Chem. Int. Ed.,2020,DOI: 10.1002/anie.202007885。本研究得到了国家自然科学基金(51803226)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)、博士后创新人才支持计划(BX20180321)、中国博士后科学基金(2018M630695)及王宽诚国际交叉团队(K.C.Wong Education Foundation (GJTD-2019-13))等项目的资助。