《宁波材料所在光热转化碳纤维用于多介质纯化方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-12-17
  • 太阳能作为一种清洁可持续的绿色能源成为近年来能源转化利用的焦点,已经被广泛应于光伏发电、光催化及光热转化等领域。其中利用光热转化原理进行海水淡化,是一种低成本、低维护的海水淡化技术。目前的光热转化材料主要有碳基材料、等离激元材料以及半导体材料等,上述材料由于其自身的物理化学稳定性,在高盐雾、高温度、高湿度以及高腐蚀等极端环境下存在应用局限,比如高盐海水(10wt%)、苦咸水、强极性有机溶剂、油水乳液等多介质的分离及纯化等。

      为解决上述问题,中国科学院宁波材料技术与工程研究所先进功能膜团队刘富研究员设计并制备了一种具有超稳定环境耐受性的碳纤维材料,用于光热转化多介质纯化。研究团队通过水热合成技术在碳纤维表面引入稳定的碳层,提高表面粗糙度,比表面积增加到0.5m2g,在波长为200-2500nm的光吸收由改性前的89%提升到97%;并且碳化改性过程中有部分极性官能团引入,改性后的碳纤维的表面极性提高,极性表面能提高到20mM/m,使得碳纤维能够依靠纤维之间的毛细力对液体(水或者有机溶剂)进行自提取,不需要附加额外的汲取材料,简化了太阳能蒸发器件的设计。编织后的碳纤维层可直接作为汲水及光热转化层进行多种介质的纯化。

      实验结果表明,碳化改性后的碳纤维的光热转化效率可达到92.5%,在一个标准太阳下对海水的光热转化速率达到1.47Kgm-2h-1,在五个标准太阳下光热转化速率为~5.86Kgm-2h-1,并且对高盐海水(模拟死海海水,盐浓度10wt%)具有长期稳定的脱盐效果,碳纤维蒸馏器在室外连续运行10天,每天的产水量稳定在~7Kgm-2,并保持稳定的机械强度。由于碳纤维丰富的多级纤维结构及良好的毛细汲水能力,对于高盐海水在纤维表面的结晶具有良好的溶解及自修复能力,结晶析出在碳纤维表面的盐经过一晚上静置,会重新溶解到海水中,从而不会影响碳纤维的光热转化效果。此外,改性后的碳纤维对于水包油乳液(非挥发性硅油)具有良好的去除效果,水中硅油含量可由10000ppm降低到11.9ppm;可对印染行业中含染料的有机溶剂如二甲基乙酰胺进行纯化,表现出良好的脱色及纯化效果,染料去除率达99.99%,蒸发速率为0.98Kgm-2h-1,并且可以长期耐受强极性有机溶剂二甲基乙酰胺(浸泡10天),其机械强度不发生变化。

      上述结果表明碳化改性碳纤维材料,在多介质纯化领域具有广阔的应用前景,如高盐海水脱盐,有机溶剂脱色,油水乳液脱油等,大大拓展了目前碳纤维以及光热转化材料在溶剂纯化方面的应用领域。该成果以“Ultra-robust carbon fibers for multi-media purification via solar-evaporation”为题发表在Journal of Materials Chemistry A (DOI: 10.1039/c8ta08829b)。博士生李田田和方齐乐副研究员为该论文的共同第一作者,刘富研究员为该论文的通讯作者。全文链接:https://pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta08829b#!divAbstract

      上述研究工作得到了国家自然科学基金(51673209, 5161101025)、中国科学院青促会(2014258)、宁波市科技局(2014B81004, 2017C110034)等项目的支持,并感谢特纤事业部陈友汜研究员和博士生席先锋对该工作的大力支持,。

  • 原文来源:http://www.nimte.ac.cn/news/progress/201812/t20181211_5210066.html
相关报告
  • 《宁波材料所在太阳能界面光热转化及多介质纯化方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-03-20
    • 统的分离与纯化技术是一个高能耗、高成本的过程,在当前能源危机和环境压力不断增加的情况下,急需革新技术以突破能耗障碍。太阳能是一种清洁、可再生能源,高效开发和利用太阳能得到全世界的重视,也是我国可持续发展战略的重要内容。太阳能光热蒸发技术因其可持续、低/无能耗、零CO2排放等特点,近年来成为分离领域的研究热点,在海水淡化、污水净化等方面展现出巨大应用潜力。其中光热转化材料是该技术的核心,主要包括等离激元材料、碳纳米材料和半导体材料三类材料,然而制备复杂、成本高、稳定性低等是当前限制光热材料推广和阻碍光热技术发展的主要原因,因此研发高转化效率、低成本、高稳定性和普适性的光热转化材料显得尤为重要和迫切。   近日,中国科学院宁波材料技术与工程研究所刘富研究员团队在前期光热材料多介质纯化应用研究的基础上(J. Mater. Chem. A 2019, 7, 586-593),发展了一种低成本的全生物质光热蒸馏器,并实现了从多种含水介质中提取纯水。基于水稻秸秆生物质,通过限氧裂解方法得到多孔碳基光吸收材料,并与细菌纤维素复合制得高稳定性、高机械强度的光热蒸发膜,太阳光吸收达89.4%。同时利用秸秆生物质的空腔结构作为汲水通道和支撑体来构筑界面蒸发系统,水稻秸秆独特的毛细内腔和壁面多级微纳结构赋予该原生通道优异的无障碍供水能力。由光热蒸发膜和汲水通道组装成的全生物质光热蒸馏器,用于模拟海水淡化装置进行连续室外运行,在晴天和多云天气下日产水量分别为6.4~7.9kgm-2和4.6~5.6kgm-2,且直接达到饮用标准(盐离子去除率保持在99.9%以上)。除了适用于海水淡化,该生物质光热蒸馏器还可从滩涂、湿地、沼泽等含水介质中稳定提取纯净水,展现出良好的普适性。相关工作发表在ACS Appl. Mater. Interfaces. 2019, DOI: 10.1021/acsami.9b00291,该工作得到阿卜杜拉国王科技大学Peng Wang教授的合作支持。   除了水溶液,研究团队针对有机溶剂体系的分离与纯化,进一步研发了耐溶剂光热材料,首次系统性研究了太阳能光热蒸发技术在有机溶剂纯化中的应用。普鲁士蓝(PB)是一类典型的Fe2+-C≡N-Fe3+面心立方晶配位聚合物,具有优异的水溶液和有机溶剂稳定性,晶体内Fe2+和Fe3+可发生电荷转移赋予PB特定的光热效应,然而结晶度和晶体空位是影响PB光热转化效率的关键因素。课题组基于单一铁源,通过慢速结晶的配位聚合,合成低空位率、高结晶度的普鲁士蓝(PB)纳米立方晶体(如图2),并通过原位生长将其负载在同样耐溶剂的棉纤维(CF)基体上,载量可控且结合稳定。制备的PB@CF复合纤维材料综合了光热转化和溶剂自汲取功能,光吸收达到93.7%;成功应用于水和一系列有机溶剂(介电常数2.38~37.78)的光热纯化,在保持99.9%去除率的前提下,蒸发通量从丙酮的29.2 Lm-2h-1到N-甲基吡咯烷酮的0.73Lm-2h-1不等(一个太阳下),与溶剂蒸发焓成显著负相关。对部分有机溶剂的纯化效率与传统压力驱动的耐有机溶剂纳滤膜相当。此外对高极性溶剂(DMAC)呈现出稳定的光热蒸发性能,对DMAC溶剂纯化运行3个月仍可保持稳定蒸发速率。该研究结果有望应用于化工和医药领域的溶剂体系分子筛分、溶剂回收、催化剂循环利用等,相关工作发表在J. Mater. Chem. A 2019, DOI: 10.1039/C9TA00798A。   以上工作得到国家自然科学基金委面上项目(51603209),国家自然科学基金委与香港研究资助局联合项目(5161101025、N-HKU706/16)以及宁波市科技局(2017C110034)等项目支持。
  • 《宁波材料所在仿生调控砂子用于海水淡化与净水收集方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-03-12
    • 某些地区的淡水资源贫乏,严重制约了社会及经济的进一步发展。传统的淡水收集技术往往需要额外的能源,成本较高。太阳能作为一种清洁、可再生的能源利用方式,对其进行高效开发是一种可尝试的途径。近年来,通过将太阳能转化成热能,进而在远远低于水沸腾的温度下产生蒸汽来进行淡水收集的方式已成为研究热点。其中,该技术的核心在于光热转换材料的蒸发器的开发。然而,当前已发展的光热材料,其原材料存在来源窄、制备复杂、成本高、稳定性低、环境适应性差等问题,限制了光热技术在淡水收集方面的进一步发展。   针对上述问题,中国科学院宁波材料技术与工程研究所陈涛研究员课题组前期研发了一系列用于光热淡水收集的高分子复合材料 (Nano Energy 2019, 60, 841; ACS Appl. Mater. Inter. 2019, 11, 15498; Solar RRL 2019, 3, 1900004; Energy Techno. 2019, 1900787)。这些工作不但提出了一系列制备简单、高转化效率、低成本、高稳定性和环境适应性强的光热材料,而且结合高分子材料固有的柔性、可裁剪、可缝制等特性,并通过简单的方式将二维光热材料转变成三维材料,从而提高了淡水收集能力。    最近,研究人员在前期工作的基础上,受到夏日海边沙滩温度高这一现象的启发,通过光热高分子材料对天然砂子的仿生改性,赋予其优异的光热转换能力,并结合砂子聚集时会自发形成的可持续供水的毛细孔的特性,发展了一种基于仿生改性砂子聚集体的多功能光热淡水收集器(Nano Energy, 2020, 68, 104311),并实现了在多种应用环境中的淡水收集(图1)。天然海砂主要由二氧化硅组成,储量丰富,由于不能成为建筑设施中的结构材料,因此价格低廉。在本研究中,锚定在天然砂子表面的聚多巴胺(PDA)既可以充当红外线吸收剂,又可以充当有效的粘合剂,通过π相互作用和氢键桥接沙子和聚吡咯(PPy),从而形成结构稳定并具有高光热转化能力的黑砂(polypyrrole/polydopamine/sand,PPSD)。此外,砂子的聚集行为使其自发形成微米尺度的自组织孔隙,这样的多孔结构可以进一步产生毛细作用力,将水从沙层底部吸到顶部,这可以用作有效的供水通道(图2)。    得到的PPSDs可进一步用于2D/3D太阳能驱动的界面水净化,在1个太阳下,蒸发速率可达到1.21 kg m-2 h-1(图3)。得益于沙子很强的塑形能力,二维平面的PPSDs可简单快速地转变为三维立体的PPSDs,在1个太阳下蒸发速率可提升至1.43 kg m-2 h-1(图4)。除了PPSDs能用于传统的光热海水纯化外,其也展示出较强的环境自适应性,能适应多种不同的应用环境(图5)。如当海水遭受城市和工业区的油污染时,若直接将含油污水直接供给蒸发器,会导致蒸发器的污染和蒸发速度的降低。为了实现高效、可持续的净水,PPSDs中聚集形成的微孔可预先有效地分离含油污水,并在随后用于光热蒸发。结果显示,经过预分离后,PPSDs的蒸发速率得到了显著提高,从0.87 kg m-2 h-1提升至1.19 kg m-2 h-1(图5)。另外,在一些内陆的干旱地区或沙漠中,没有直接可见的水源,绝大部分水汽分布在空气中。由于FeCl3的掺杂,以及在内部毛细作用力的协同作用下,PPSDs可以先吸收大气中的水分,随后在太阳光的驱动下,原位进行光热蒸发而获得淡水。在实际的户外大气淡水收集实验中,PPSDs的日均净水收集能力约为1.13 kg m-2,远高于纯砂子收集能力(约0.07 kg m-2)。因此,该多功能PPSDs聚集体的概念为实现在多变的应用环境中对环境适应的淡水收集提供了一条新的途径。    本研究还得到了国家自然科学基金(51803226)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)、博士后创新人才支持计划(BX20180321)、中国博士后科学基金(2018M630695)及宁波市科技局(2018A610108)等项目的资助。