《第三代半导体器件制备及评价技术取得突破》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-09-12
  • 以氮化镓(GaN)和碳化硅(SiC)为代表的第三代半导体材料,具备高击穿电场、高热导率、高电子饱和速率及抗强辐射能力等优异性能,更适合于制作高温、高频、抗辐射及大功率电子器件,在光电子和微电子领域具有重要的应用价值。

      “十二五”期间,863计划重点支持了“第三代半导体器件制备及评价技术”项目。近日,科技部高新司在北京组织召开项目验收会。项目重点围绕第三代半导体技术中的关键材料、关键器件以及关键工艺进行研究,开发出基于新型基板的第三代半导体器件封装技术,满足对应高性能封装和低成本消费级封装的需求,研制出高带宽GaN发光器件及基于发光器件的可见光通信技术,并实现智能家居演示系统的试制;开展第三代半导体封装和系统可靠性研究,形成相关标准或技术规范;制备出高性能SiC基GaN器件。通过项目的实施,我国在第三代半导体关键的SiC和GaN材料、功率器件、高性能封装以及可见光通讯等领域取得突破,自主发展出相关材料与器件的关键技术,有助于支撑我国在节能减排、现代信息工程、现代国防建设上的重大需求。

      “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,将“战略先进电子材料”列为发展重点之一,以第三代半导体材料与半导体照明、新型显示为核心,以大功率激光材料与器件、高端光电子与微电子材料为重点,推动跨界技术整合,抢占先进电子材料技术的制高点。

相关报告
  • 《我国第三代半导体器件制备及评价技术取得突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-08-31
    • 以氮化镓(GaN)和碳化硅(SiC)为代表的第三代半导体材料,具备高击穿电场、高热导率、高电子饱和速率及抗强辐射能力等优异性能,更适合于制作高温、高频、抗辐射及大功率电子器件,在光电子和微电子领域具有重要的应用价值。 “十二五”期间,863计划重点支持了“第三代半导体器件制备及评价技术”项目。近日,科技部高新司在北京组织召开项目验收会。项目重点围绕第三代半导体技术中的关键材料、关键器件以及关键工艺进行研究,开发出基于新型基板的第三代半导体器件封装技术,满足对应高性能封装和低成本消费级封装的需求,研制出高带宽GaN发光器件及基于发光器件的可见光通信技术,并实现智能家居演示系统的试制;开展第三代半导体封装和系统可靠性研究,形成相关标准或技术规范;制备出高性能SiC基GaN器件。通过项目的实施,我国在第三代半导体关键的SiC和GaN材料、功率器件、高性能封装以及可见光通讯等领域取得突破,自主发展出相关材料与器件的关键技术,有助于支撑我国在节能减排、现代信息工程、现代国防建设上的重大需求。 “十三五”期间,为进一步推动我国材料领域科技创新和产业化发展,科技部制定了《“十三五”材料领域科技创新专项规划》,将“战略先进电子材料”列为发展重点之一,以第三代半导体材料与半导体照明、新型显示为核心,以大功率激光材料与器件、高端光电子与微电子材料为重点,推动跨界技术整合,抢占先进电子材料技术的制高点。
  • 《国家第三代半导体技术创新中心首次突破沟槽型碳化硅MOSFET芯片制造关键技术》

    • 来源专题:集成电路与量子信息
    • 发布时间:2024-09-03
    • 碳化硅是第三代半导体材料的代表性材料具有宽禁带、高临界击穿电场、高电子饱和迁移速率和高导热率等优良特性。市场调研机构Yole长期看好碳化硅功率器件市场,预计到2029年碳化硅功率器件市场规模将达到100亿美元、2023-2029年年复合增长率为25%。 目前业内应用主要以平面型碳化硅MOSFET芯片为主。而沟槽栅结构的设计比平面栅结构具有明显的性能优势,可实现更低的导通损耗、更好的开关性能、更高的晶圆密度,从而大大降低芯片使用成本,却一直以来受限于制造工艺,沟槽型碳化硅MOSFET芯片产品迟迟未能问世、应用。 近期,国家第三代半导体技术创新中心(南京)打破平面型碳化硅MOSFET芯片性能“天花板”,历时4年不断尝试新工艺最终建立全新工艺流程,自主研发成功攻关沟槽型碳化硅MOSFET芯片制造关键技术,较平面型提升导通性能30%左右。 目前国家第三代半导体技术创新中心(南京)正在进行沟槽型碳化硅MOSFET芯片产品开发,推出沟槽型的碳化硅功率器件。预计一年内可在新能源汽车电驱动、智能电网、光伏储能等领域投入应用。