《Nat Biotechnol:厄运不断,CRISPR/Cas9基因编辑竟导致大片段DNA缺失和重排》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-19
  • 在几天前的一项研究中,来自美国伊利诺伊大学芝加哥分校的研究人员发现在利用CRISPR/Cas9进行基因编辑遭遇失败(大约在15%的时间发生)时,这通常是由于Cas9蛋白持续地结合到DNA上,这会阻止DNA修复酶进入切割位点(详情参见生物新闻报道:Mol Cell:揭示CRISPR/Cas9基因编辑为何有时会遭遇失败)。

    科学家们已将CRISPR基因编辑作为一种改变基因组的方法,但有些人提醒道,不想要的DNA变化可能因未检测到而被遗漏。

    针对人胚胎干细胞的基因编辑实验揭示出CRISPR-Cas9系统的不精确性。图片来自Annie Cavanagh via Wellcome/CC BY NC。

    根据一项新的研究,这种基因编辑工具能够导致基因组上的靶位点附近发生大片段DNA缺失和重排。这些变化能够干扰对实验结果的解释,并且可能使得设计基于CRISPR的疗法的努力复杂化。相关研究结果于2018年7月17日在线发表在Nature Biotechnology期刊上,论文标题为“Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements”。

    这一发现不仅与CRISPR而且也与其他的基因编辑系统的之前结果相一致(Nature Communications, 2017, doi:10.1038/ncomms15464)。美国沙克生物研究所生物工程师Patrick Hsu说,这些不想要的编辑是一个值得更多关注的问题。他指出,“我确实认为这一点在这个领域一直被低估。”

    CRISPR-Cas9基因编辑依赖于Cas9酶在特定的靶位点上切割DNA。细胞随后尝试利用DNA修复机制重新密封这种DNA断裂。这些机制并不总是完美地起作用,有时DNA片段会被删除或重排,或者不相关的DNA片段被整合到染色体中。

    领导这项新研究的英国韦尔科姆基金会桑格研究所小鼠遗传学家Allan Bradley说,“细胞会尝试将DNA重新拼接在一起。但是,它并不知道哪些DNA片段彼此相邻。”

    人们经常利用CRISPR产生小片段DNA缺失,希望这样能够破坏一个基因的功能。但是在检查CRISPR编辑时,Bradley和他的同事们发现了大片段DNA---通常长数千个碱基---的缺失和复杂的DNA序列重排,这些重排导致之前相隔遥远的DNA序列被拼接在一起。这种现象在他们测试的所有三种细胞类型---小鼠胚胎干细胞、小鼠造血祖细胞和一种人分化细胞系---中都很普遍。

    质量控制

    许多人使用一种扩增短片段DNA的方法来测试他们的编辑是否已经完成。但是美国布兰戴斯大学分子生物学家James Haber说,这种方法可能会错过更大的DNA片段缺失和重排。

    Hsu指出,这些缺失和重排应当仅在依赖于DNA切割的基因编辑技术中发生,而在避免切割DNA的其他类型的CRISPR改进版本中不会发生。比如,一种被称作碱基编辑的方法使用一种改进的CRISPR系统在不切割DNA的情形下将一个DNA碱基转换为另一个碱基(Nature, doi:10.1038/nature.2016.19773)。其他的系统使用与其他的酶融合在一起的灭活Cas9来打开或关闭基因,或者靶向RNA(Nature, doi:10.1038/531156a)。

    一些科学家已经在寻找更大的DNA片段缺失。位于美国马萨诸塞州剑桥市的eGenesis公司正在利用基因编辑对猪器官进行基因改造以便用于移植。该公司联合创始人兼首席科学官Luhan Yang说,这家公司的科学家们经常利用多种方法来寻找大片段DNA和小片段DNA缺失。 同样地,在另一家致力于开发基于CRISPR的疗法的公司Intellia那里,科学家们在小鼠肝脏基因编辑研究中一直在寻找大片段DNA缺失。Intellia公司高级副总裁Thomas Barnes说,到目前为止,他们没有发现任何大片段DNA缺失的证据。他说,这可能是因为他的团队研究的细胞不经常发生分裂。相比之下,Bradley及其同事们开展这项新的研究使用了活跃地发生分裂的细胞。

    Haber说,总体而言,这些不想要的编辑是一个值得更多关注的问题,但这不应该阻止任何人使用CRISPR。他说,“这意味着当人们使用它时,他们需要开展更加充分的分析。了解您的突变是否与您认为的一样,这一点是非常重要的。”

  • 原文来源:https://www.nature.com/articles/d41586-018-05736-3
相关报告
  • 《Nat Genet:挑战常规!揭示人细胞中的CRISPR-Cas9基因编辑竟通过范可尼贫血通路发生》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-02
    • 在一项新的研究中,来自美国加州大学伯克利分校的研究人员发现人们对Cas9酶切割DNA后细胞如何修复基因组作出的假设是错误的。这一发现有助深入了解为何CRISPR-Cas9基因编辑在几乎所有细胞中都能很好地发挥作用(尽管不会在所有细胞中都取得同样的成功)。它可能有助于人们提高细胞将新的DNA片段插入到基因组---比如利用正确的DNA序列替换有害的突变---中的效率和对CRISPR-Cas9基因编辑加以调整以便获得期望的结果。相关研究结果发表在2018年8月的Nature Genetics期刊上,论文标题为“CRISPR–Cas9 genome editing in human cells occurs via the Fanconi anemia pathway”。 论文第一作者、加州大学伯克利分校博士后研究员Chris Richardson说,“如果你想要治疗镰状细胞性贫血,那么你取得成功的机会与你利用正确的基因替换发生突变的镰状细胞基因的效率密不可分。如果你从患者体内收集了一百万个细胞,并且你实现的DNA片段插入率为10%,那么这就不如30%到40%的DNA片段插入率那么好。能够操纵这些细胞来增加一个被称作同源介导修复(homology-directed repair, HDR)的过程的发生频率是非常振奋人心的。” 论文通信作者、加州大学伯克利分校分子与细胞生物学兼职教授Jacob Corn说,“基因编辑是非常强大的,人们对它充满着期待,但到迄今为止,它出现了很多错误。它在人体细胞中发挥作用的机制是未知的,而且人们对此提出了很多假设。我们终于开始了解它的作用机制。” CRISPR依赖于DNA修复 CRISPR-Cas9是一种革命性的工具,这是因为它能够精确地靶向含有数十亿个碱基的人基因组中的特定DNA序列并切割双链DNA分子。但在那之后,细胞就开始修复这种损伤。 DNA修复能够通过两种方式进行。酶能够将悬挂的DNA末端连接在一起,这通常导致一个或多个碱基添加或缺失,从而破坏基因的功能。或者,其他的酶能够利用与切割位点的上游和下游序列相匹配的单链DNA修补这种断裂。一条互补的DNA链也会由此产生,从而完成这种双链DNA修复。 前者被称为非同源末端连接(non-homologous end-joining, NHEJ),它似乎是CRISPR切割后出现的最为常见的结果。后者就是前面所提及的同源介导修复(HDR),相比于其他的细胞,它在某些类型的细胞中更为频繁地发生,并且需要一种能够用于修补这种断裂的DNA片段的存在。科学家们经常提供单链DNA,并希望细胞利用它实现将新的DNA序列替换掉错误的DNA序列的目的。然而,这两个DNA修复过程都有点神秘,而且没有人知道为何有些细胞很容易修补DNA断裂,而其他细胞很少这样做。 Richardson说,“将CRISPR-Cas9用于医学或合成生物学应用的热情是非常高的,但是没有人真正地知道在将它导入到细胞中后会发生什么。它会导致双链DNA断裂,你依靠细胞来修复这些断裂。但是人们并没有真正地理解这个过程是如何发挥作用的。” 为了找出哪些DNA修复酶在CRISPR切割后的同源介导修复中发挥着至关重要的作用,Richardson和Corn采用了一种被称作CRISPR干扰(CRISPRi)的技术,一次一个地敲除已知或怀疑参与DNA修复的2000多个基因。 当许多经证实起着重要作用的基因被沉默时,同源介导修复发生的频率显著下降。令人吃惊的是,这些基因也参与一个之前认为并不参与CRISPR修复的重要修复通路。 范可尼贫血通路(Fanconi anemia pathway) 这个修复通路涉及21种不同的蛋白,它被称为范可尼贫血通路,这是因为如果编码这些蛋白的基因中的任何一个遭受破坏,那么人们就会患上范可尼贫血,这是一种罕见但严重的遗传性疾病,在这种疾病中,骨髓不能够产生足够的新的血细胞。它与出生缺陷和高的癌症风险(包括童年时患上白血病的几率为10%)有关。很少有范可尼贫血患者活到30岁以上。 这个通路已被人们所知和研究了数十年,但是人们普遍认为它修复一种特殊的DNA损伤:DNA链间交联(DNA interstrand crosslink):一条DNA链上的核苷酸与相邻DNA链上的核苷酸紧密地结合在一起,这会干扰DNA复制并经常杀死细胞。Corn指出,科学家们在20世纪80年代就报道了同源介导修复与范可尼贫血通路之间的关联性,但这一点被人们忽视或误解了。 Richardson说,“基于我们的研究,我们认为范可尼贫血通路在修复其他类型的DNA损伤中起着重要的作用,不过最好将它理解为一种修复双链DNA断裂的通路。在Cas9进行编辑后,如果你想插入新的DNA序列,那么范可尼贫血通路是必需的。” 然而,范可尼贫血通路在修复CRISPR断裂中的重要性让人对一些计划用于疾病治疗的CRISPR疗法本身提出质疑。在没有活性的范可尼贫血通路的情形下,在Cas9切割DNA后,细胞可能无法利用正常的基因替换发生突变的基因。 事实上,范可尼贫血通路的活性水平可能会影响CRISPR在特定细胞中插入DNA的效率。这些研究人员得出结论:尽管非同源末端连接是双链DNA断裂发生后的默认修复机制,但范可尼贫血通路与它竞争,并且更高的范可尼贫血通路活性导致更多的同源介导修复和更少的非同源末端连接发生。 癌症治疗 虽然这些发现有助于科学家们更好地理解人体细胞中的DNA修复机制,但是它们也可能有助于人们开发出靶向癌细胞中的DNA修复的抗癌疗法。鉴于如今其他的因素似乎也参与修复双链DNA断裂,因此这项研究扩大了当遭受异常调节时会干扰癌细胞中的DNA修复而让它们更容易死亡的蛋白清单。 Richardson还发现作为范可尼贫血通路中的一种蛋白,FANCD2始终靶向由CRISPR-Cas9产生的双链断裂位点,这表明它在调节将新的DNA序列在切割位点上插入到基因组中起重要作用。人们可能能够对FANCD2蛋白加以调整来提高细胞通过同源介导修复机制插入DNA的频率。 Richardson说,“此外,由于FANCD2定位到Cas9导致的断裂位点上,因此你能够利用FANCD2来绘制Cas9在任何细胞类型中进行切割的位置。如果你对一群细胞进行编辑,而且你想要知道在靶切割(on-target cut)和脱靶切割(off-target cut)的位置,那么你能够仅绘制FANCD2结合到基因组中的位置,这样就能够找到切割位置。” Corn说,“整个范可尼贫血通路影响非同源末端连接和同源介导修复之间的平衡;它起着类似于交通警察的作用。因此,患者的基因型将影响你如何进行基因编辑。”
  • 《Nat Med:利用CRISPR/Cas9恢复肌肉功能》

    • 来源专题:再生医学与健康研发动态监测
    • 编译者:malili
    • 发布时间:2017-07-26
    • 在一项新的研究中,研究人员利用CRISPR在小鼠体内成功地治疗一种被称作先天性肌营养不良1A型(congenital muscular dystrophy type 1A, MDC1A)的罕见疾病。这种疾病能够导致严重的肌肉萎缩和瘫痪。他们能够通过校正一种导致这种疾病的剪接位点突变恢复了这些小鼠的肌肉功能。相关研究结果于2017年7月17日在线发表在Nature Medicine期刊上,论文标题为“Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism”。 加拿大多伦多病童医院研究员Dwi Kemaladewi在一项声明中解释道,“我们利用CRISPR切割两个关键位点上的DNA,而不是插入已得到校正的DNA片段。这会导致基因的两个末端一起恢复原状,从而产生一个正常的剪接位点。” 通过靶向骨骼肌和外周神经,这些研究人员能够改善这些小鼠的运动功能和移动能力。Kemaladewi在一份新闻稿中说道,“这是比较重要的,这是因为开发治疗肌营养不良的策略主要集中在改善这些肌肉性能。专家们知道外周神经是较为重要的,但是骨骼肌被认为是导致MDC1A的元凶,而且传统上是开发治疗方案的重点。” 美国哈佛大学生物学家Amy Wagers(未参与这项研究)告诉《多伦多星报》,“我们在动物模型中观察到的基因校正强健性是非常鼓舞人心的。” Wagers团队和其他人已利用CRISPR修复患上另一种罕见的被称作杜兴氏肌肉营养不良(Duchenne muscular dystrophy, DMD)的肌肉疾病的成年小鼠中的蛋白缺乏(Science, doi:10.1126/science.aad5143)。Kemaladewi和同事们也治疗了这种疾病---在2015年的一项研究中,他们的团队利用这种基因编辑工具移除了来自一名DMD患者的细胞中的一种发生重复的基因,从而恢复了相关蛋白的功能(American Journal of Human Genetics, doi:10.1016/j.ajhg.2015.11.012)。 多伦多病童医院干细胞与发育生物学家Janet Rossant(未参与这项研究)告诉《多伦多星报》,“直说了吧,首次考虑在人体中对这些疾病进行基因校正是有可能的,尽管这仍然处于考虑阶段。” 参考资料: 1.Kemaladewi DU, Maino E, Hyatt E et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nature Medicine, Publication online: 2017 Jul 17, doi:10.1038/nm.4367 2.CRISPR Restores Muscle Function in Mice