抗体是免疫系统对抗感染的主要武器之一。这些蛋白质已成为生物技术行业的宠儿,部分原因是它们可以被设计成附着在几乎任何可以想象的蛋白质上,从而操纵其活动。但斯坦福大学的计算生物学家 Brian Hie 表示,生成具有有效特性的抗体并对其进行改进优化,涉及“大量的强力筛选”。
为了了解生成式 AI 工具是否可以减少一些繁重的工作,Hie、Kim 团队使用了称为蛋白质语言模型的神经网络。这些类似于构成 ChatGPT 等工具基础的「大型语言模型」。但是,蛋白质语言模型不是被输入大量文本,而是在数千万个蛋白质序列上进行训练。
研究人员已经使用此类模型来设计全新的蛋白质,并帮助以高精度预测蛋白质的结构。Hie 的团队使用了一种蛋白质语言模型——由 Meta AI 的研究人员开发——来建议抗体的少量突变。
在它学习的近 1 亿个蛋白质序列中,该模型只接受了几千个抗体序列的训练。尽管如此,该模型的建议中有惊人的高比例提高了针对 SARS-CoV-2、埃博拉病毒和流感的抗体与其目标结合的能力。
改变批准用于治疗埃博拉病毒的疗法和 COVID-19 疗法可以提高这些分子识别和阻断这些病毒用来感染细胞的蛋白质的能力。(Hie 表示,COVID-19 抗体对 Omicron 及其亚变体无效,人工智能引导的变化不太可能恢复有效性。)
Kim 说,许多建议的抗体变化发生在与其靶标相互作用的蛋白质区域之外,这通常是工程工作的重点。他补充说:「该模型所涉及的信息甚至对抗体工程专家来说都是完全不明显的……对我来说,这就是『天哪,这是怎么回事?』时刻。」
「这是人们用来改善抗体的工具。」英国牛津大学免疫信息学研究员 Charlotte Deane 说,「我觉得这真的很酷。」 但她补充说,许多研究人员希望,生成式 AI 不是简单地改进现有抗体,而是能够创造出全新的抗体,这些抗体将与选定的目标结合。
Nabla Bio 的联合创始人 Surge Biswas 说,这种能力可以帮助研究人员开发针对抵抗其他抗体设计方法的分子靶标的药物,该公司正在应对这一挑战。
例如,人工智能可以帮助解决 G 蛋白偶联受体问题,G 蛋白偶联受体是夹在细胞膜中的一类蛋白质,与神经系统疾病、心脏病和无数其他疾病有关。Biswas 说,生成式 AI 还可以帮助设计能够锁定多个目标的抗体药物,例如设计肿瘤蛋白和可以杀死肿瘤的免疫细胞。
斯坦福大学生物工程师 Possu Huang 表示,蛋白质语言模型功能强大,非常擅长优化现有蛋白质,包括抗体。但仅在蛋白质序列上训练的模型可能难以产生识别特定蛋白质的真正新抗体。
研究人员表示他们正在取得进展。2023 年 3 月,位于华盛顿州温哥华的生物技术公司 Absci 的科学家们在 bioRxiv 发布的预印本中报告了他们所说的用 AI 制造新抗体的第一步。他们使用包含蛋白质序列和实验数据的模型,为用于治疗乳腺癌的抗体药物的几个重要区域生成了新设计。