《田纳西大学开发从废弃叶片回收玻璃纤维的技术》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-11-02
  • 美国田纳西大学正在开发一项技术,该技术将使风力涡轮机叶片再循环成为新的再生复合材料。

    这项新技术从增强聚合物复合材料中回收玻璃纤维,同时限制了纤维在回收过程中的机械降解。这使得回收的纤维可重新用于其他用途,例如可再生能源系统组件和高性能运动器材。

    美国能源部的小型企业技术转让计划和风能技术办公室提供了110万美元的支持,从而使该项目得以实现。

    蒂克尔工程学院机械、航空和生物医学工程系研究助理教授、该项目的首席研究员Ryan Ginder说:“风能现在成为美国最大的国内可再生能源,这是有原因的。风力发电是清洁的、经济的,并且可以在美国就地供应,但是仍然存在一个问题。

    为了制造这些巨大的标志性叶片,风力涡轮机制造商依赖于先进的聚合物复合材料。这些材料可以抵抗大自然中一些最强劲的力量,但最终会损耗并进入垃圾填埋场。随着风能行业的发展和废弃叶片水平上升至数万吨、数十万吨甚至更多,这就需要更好的使用寿命终止解决方案,而不是简单地将其堆放在垃圾场。”

    该大学与位于诺克斯维尔的初创公司Carbon Rivers合作,进一步开发用于处理废弃风力涡轮机叶片的新型玻璃纤维回收技术并使其商业化。

    身为Carbon Rivers公司老板和田纳西大学校友的Bowie Benson说:“2020年对于我们的社区来说是充满挑战的一年,但只要我们继续共同努力应对严峻挑战,例如攻克美国能源可持续性的提升问题等,我觉得未来仍然充满希望。对于我们项目的下一阶段及其在改善风能行业环境足迹、在田纳西州东部创造新的急需工作岗位等方面的潜力,我持乐观态度。”

    在接下来的两年中,田纳西大学-Carbon Rivers团队将与GE可再生能源、伯克希尔·哈撒韦能源公司的MidAmerican Energy 公司和PacifiCorp公用事业公司合作开发中试规模的玻璃纤维复合材料回收系统。

相关报告
  • 《美国田纳西州实现商业规模的碳纤维回收》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-04-29
    • Carbon Fiber Recycling(碳纤维回收)公司位于田纳西州塔泽维尔的35000平方英尺的回收设施正在建设中,预计将于2021年初启用,但该公司报告称,目前正在接收碳纤维废料。 据报道,该设施将雇用约20人,采用专有的连续流动热解工艺,每年至少可回收2000吨碳纤维废料,生产未经粉碎或研磨的碳纤维产品。为了适应其生产率,该公司需要碳纤维行业的支持才能实现这一目标。碳纤维回收已经在与一些公司合作,这些公司已经对碳纤维废料实施了一种绿色、可持续的方法。 “我们将采用任何形式的碳纤维-固化或未固化,热固性或热塑性”,Carbon Fiber Recycling LLC许可和销售执行总监Tim Spahn说。 具体来说,该公司正在寻找含有至少30%碳纤维的碳纤维废料,预浸料或成品。Spahn说,唯一的例外是碳纤维与玻璃纤维混合,该公司无法处理。 Spahn说,到目前为止,该公司已经从汽车,航空航天和体育用品行业的公司那里获得了材料。有兴趣进行回收利用的公司被要求向公司发送样品,然后在获得批准后将材料运送到工厂。Spahn说:“在大多数情况下,回收碳纤维比填埋便宜。” 他补充说:“在我们的过程中,我们能够回收所带入的废物的每一部分–垃圾填埋场中没有任何废物。” 该公司的短切纤维产品可用于多种应用。例如,Spahn说,碳纤维回收与田纳西大学(诺克斯维尔)和橡树岭国家实验室(ORNL,美国田纳西州橡树岭)的纤维和复合材料制造厂(FCMF)紧密合作, 再生纤维的应用。
  • 《NAT SUSTAIN:废弃玻璃纤维增强塑料的快速升级利用》

    • 来源专题:岩土力学与工程信息资源网
    • 编译者:李娜娜
    • 发布时间:2024-07-24
    • 玻璃纤维增强塑料(Glass fiber reinforced plastics,GFRP)具有高强度、高模量、轻质、耐高温等优异性能,被广泛应用于风电叶片、化工反应器、建筑材料中。据统计,2030年,全球对GFRP的需求量将超过600万吨,年增长率将达到10%。然而,GFRP的使用寿命只有10-40年,这意味着全球每年有数百万吨GFRP废弃物。目前,废弃GFRP的处理方法主要包括直接掩埋和焚烧。直接掩埋会占据大量土地资源,且会对地下水造成污染。焚烧过程中GFRP表面的塑料燃烧会产生有害气体造成环境污染。如何高效、环保、低成本的回GFRP是目前亟待解决的环境问题。 美国工程院院士、美国莱斯大学James M. Tour教授团队开发了一种无溶剂、高能效的闪蒸升级再造方法—闪蒸碳热还原技术(FCR),可以将不同纤维增强塑料的混合物超快转化为碳化硅(一种广泛使用的增强材料和半导体材料),且产量高(大于90%)。通过改变反应温度和反应时间,可以制备出3C和6H两种不同相态的碳化硅材料,这两种不同相态的碳化硅具有不同的性质。例如,3C-SiC具有更小的带隙,更低的热导率、更高的电子迁移率和更高的硬度。基于制备的碳化硅材料,进一步探究了不同相态碳化硅材料在锂离子电池负极中的应用,并发现3C-SiC负极具有更高的比容量和更优异的倍率性能。技术经济分析结果显示,FCR技术处理一吨GFRP的成本低至47美元,分别为溶解法和焚烧法的0.2%和3.4%。生命周期分析结果表明,相较于焚烧、溶剂化处理等方法,FCR方法仅仅在数秒时间内即可实现GFRP的有效回收,极大地降低了能量需求、温室气体排放和水的消耗。 鉴于全球废弃纤维增强塑料的数量不断增加,闪蒸碳热还原技术方法提供了一种经济、环保的途径,可将废纤维增强塑料升级回收为具有良好相位可控性的高附加值碳化硅。这不仅减轻了废物处理的负担,并大大减少了传统回收方法产生的二次废物流,该方法还可扩展到多种含硅废物的回收利用。相关研究成果发表于《Nature Sustainability》[1]。 [1] Flash Upcycling of Waste Glass Fibre-Reinforced Plastics to Silicon Carbide