《瑞士研究人员研发新型磁致感应形状记忆复合材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-06-12
  • 瑞士保罗谢尔研究所(PSI)和苏黎世联邦理工学院(ETH Zurich)的研究人员成功研发出一种可由磁性条件激励其形状记忆效应的新型复合材料。当被放入磁场中时材料将保持某种特定的形状。新型复合材料与传统磁感应形状记忆材料不同,它由聚合物和嵌入其中的所谓磁流变液体的液滴组成。这种新型复合材料的应用领域包括医药、航空航天、电子和机器人。该研究结果发表在科学期刊Advanced Materials上。

    新材料的变化过程从视频中看起来就像一个魔术:在施加磁场之前,黑色条状材料在平台上保持柔软状态,没有表现出任何更多的性状。黑色条状材料由两种成分组成:硅基树脂聚合物和水与甘油的混合液滴,其中漂浮着微小羰基铁颗粒。后者提供材料的磁性和形状记忆效应。如果用镊子将复合材料强制扭曲成某种形状然后暴露在磁场中,即使取下镊子也能保持扭曲形状。只有当磁场也被移除时,材料才会恢复其原始形状。

    到目前为止,传统形状记忆复合材料多由聚合物基体树脂和金属粒子填料组成。然而保罗谢尔研究所和苏黎世联邦理工学院的研究人员使用水滴和甘油将磁性粒子嵌入聚合物基体树脂中。通过这种方式,研究人员得到了类似于牛奶的磁流变液滴分散体。

    就像牛奶中的微小的脂肪滴分散在水溶液中一样,细小的磁流变液滴也均匀地分布在复合材料中。“由于分散在聚合物基体中的磁敏相是液体,因此施加磁场时产生的力比以前报道的要大得多,”保罗谢尔研究所介观系统研究组负责人兼苏黎世联邦理工学院教授Laura Heyderman解释道,“如果磁场作用在复合材料上,它会变硬。这种新的材料概念只能通过磁性材料和柔性材料两个完全不同领域的专业团队之间的合作来实现。”

    通过与磁场方向一致形成形状记忆效应

    研究人员在保罗谢尔研究所的瑞士光源(SLS)X射线检测设备的帮助下研究了这种新材料。在X射线断层图像中,他们发现聚合物中液滴的长度在磁场的影响下变长,并且液体中的羰基铁颗粒至少部分地沿着磁力线排列。这两个因素使测试材料的刚度提高了30倍。

    除了较高的力之外,新材料的磁致形状记忆效应具有更多优势。大多数形状记忆材料会对温度变化做出反应。在医疗应用中会导致两个问题。首先过多的热量会损害人体的细胞。其次无法保证形状记忆材料的均匀升温。通过磁场条件激励形状记忆效应可以避免这两个缺点。

    用于医学和机器人的机械活性材料

    新型复合材料可以在医学、太空飞行、电子和机器人技术领域中得到广泛应用。例如,在医学领域,进行血栓微创手术时可改变通过血管的手术导管的硬度,减轻患者副作用。在太空探索领域,形状记忆材料可用于探测漫游车上自行充气或折叠的轮胎。在电子设备领域,软功能材料可用于柔性电源、数据电缆或可穿戴设备。形状记忆材料也为机器人领域创造了新的可能性,例如可以在没有马达的情况下执行机械运动。

相关报告
  • 《超快响应的形状记忆高分子/石墨烯复合材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-05-06
    • 形状记忆高分子材料可以在外界刺激下按照既定的程序变形,这使得它在驱动器、传感器、药物传输等方面具有巨大的应用前景。由于高分子材料本身的低导热系数和缓慢的链运动速率,形状记忆高分子材料的响应速度较其它形状记忆材料(如形状记忆合金)仍然具有很大的差距。 近日,浙大高超(共同通讯)、许震(共同通讯)团队与马列(共同通讯)团队及其他合作者共同努力,突破了这一响应速度难题。该项工作以高度可拉伸的石墨烯气凝胶为模板,在其内部构筑由聚己内酯(polycaprolactone,PCL)纳米薄膜(2.5-60nm)搭建而成的形状记忆网络。其中,石墨烯纳米网络作为快速能量转换和能量注入通道,PCL纳米网络作为快速能量传递和形变载体。这种具有PCL/石墨烯互穿网络结构的气凝胶纳米复合材料在电信号刺激下,响应时间仅为50毫秒,响应速度达175±40 mm s-1,最大形变约100%。 该工作以“Millisecond Responseof Shape Memory Polymer Nanocomposite Aerogel Powered by Stretchable GrapheneFramework”为题发表在ACS Nano 上。 传统的形状记忆高分子复合材料多采用与导电添加剂共混的方法制备,从而导致导电网络到SMP基体的热传导距离一般在微米级。然而,高分子材料的热导率一般都较低 (比如本文使用的聚己内酯PC,~ 0.3 W mK-1),这就导致传统的共混形状记忆高分子材料的响应时间一般在秒级以上。此项研究以高度可拉伸的气凝胶为模板,在其表面构筑纳米级聚己内酯连续纳米层(2.5-60 nm),减少热传递距离。 此项研究所使用的可拉伸气凝胶是基于团队2018年的“Highly Stretchable Carbon Aerogels”工作(Nat.Commun.2018, 9, 881)进行展开(《自然·通讯》浙大高超教授团队研发出高可拉伸全碳气凝胶弹性体)。利用石墨烯气凝胶作为快速的能量注入和转换骨架,实现SMP快速相转变。最终得到响应时间在毫秒级(50 ms),伸长率在100% 以上的超轻复合气凝胶材料。 同时,该项工作利用浙大航空航天学院的王宏涛课题组自主开发的原位TEM样品杆,观察到复合气凝胶基本组成单元—石墨烯/PCL复合片在电刺激下的形状记忆行为。 该快速响应的超轻复合气凝胶材料具有广阔的应用前景,可被设计为超快速熔断器来保护精密电路,在过载情况下,可在134 ms 内断路,保护用电器。同时,它还可以与电磁铁结合,做为微型振荡器。 高超教授的博士研究生郭凡为论文第一作者,马列教授的博士研究生郑晓闻为论文第二作者。浙江大学高分子科学研究所马列教授和浙江大学航空航天学院王宏涛教授为这个工作的完成提供了大力支持和合作指导。论文得到了国家重点研发计划、国家自然科学基金委等相关经费的资助。
  • 《金属所研发出高阻尼、高吸能与形状记忆兼得的镁基仿生材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-13
    • 除了高 比强度、比刚度以及优异的导热与电磁屏蔽等性能,镁的阻尼性能显著优于大多数工程金属材料,甚至可比肩一些常用的高分子材料,但其强度与耐热性明显高于高分子材料,因此在减震、吸能、降噪等方面突显优势。镁及其合金的强度、刚度、塑性和断裂韧性仍低于钢铁和铝合金,且抗高温蠕变能力差,制约了其广泛应用。众所周知,金属材料的 强度与阻尼性能表现为相互矛盾的倒置关系,一方面通过对位错运动的限制可实现强度的提高,另一方面阻尼则要求位错易于运动和摆脱钉扎,这导致依赖经典的材料强化手段必然以牺牲阻尼性能为代价。 如何在不显著提高密度且不降低阻尼性能的前提下,实现镁和镁合金强韧化成为 具有挑战性的关键科学问题 。 与人造材料相比,天然生物材料的宏观力学性能通常显著优于其基本结构单元的简单加和,本源在于其复杂、多尺度的自组装结构。诸如 贝壳、骨骼等在微观上呈现三维相互贯穿式结构,各组成相保持连通且相互穿插,由此实现各组成相在性能与功能上的优势互补,以及材料的同步强韧化。对自然界神奇“结构 - 性能关系”的理解为设计综合性能优异的新材料提供了独到的思路。 最近,针对航空航天、精密仪器等领域对于材料减震、吸能等方面的性能需求,中国科学院金属研究所材料疲劳与断裂实验室刘增乾、张哲峰,钛合金研究部李述军、杨锐等与美国加州大学伯克利分校、中国工程物理研究院开展合作,借鉴天然生物材料三维互穿微观结构的理念,将镁熔融浸渗至增材制造的镍钛合金骨架,构筑成轻质、高强、高阻尼、高吸能镁 - 镍钛仿生复合材料。 微观三维互穿仿生结构不仅实现了镍钛增强相与镁基体在性能优势上的互补与结合,而且赋予材料形状记忆与自修复功能。首先,组成相在三维空间相互穿插有利于促进相互间的应力传递,弱化应力集中,使两相的变形更加协调,更好地发挥了镍钛增强相的强化效果,仿生复合材料的强度显著高于基于混合定律的简单叠加。其次,仿生复合材料中基体与增强相之间不仅依靠界面的冶金结合,而且存在三维穿插的机械互锁,有效地避免了因界面开裂造成的过早失效,赋予材料良好的损伤容限。再次,仿生复合材料中组成相在三维空间的贯通,不仅充分保留了镁基体的阻尼性能,而且两相之间的弱界面结合可引入微屈服、微裂纹等新的阻尼机制,进一步提高阻尼性能。此外,在特定温度范围( >150 ℃),镍钛增强相骨架的形状记忆效应与镁基体的蠕变行为具有耦合效应,镍钛的回复应力远高于基体的蠕变应力,使得形变损伤后的仿生复合材料可通过常规热处理恢复其初始形状和强度,达到形状记忆兼具自修复功能的双重效果,并且可往复循环利用。 通过多重机制分别提高强度和阻尼性能,新型仿生复合材料突破了两者之间的相互制约关系,实现了镁合金的强度、阻尼和能量吸收效率等多种性能的良好结合,综合性能优于目前已知的工程材料,有望成为精密仪器、航空航天等领域需求的新型阻尼减震材料。 上述工作于近日发表在《 Science Advances 》 6 (2020) eaba5581 ,文章第一作者为中国科学院金属研究所博士研究生张明阳。相关工作得到了国家自然科学基金、“兴辽英才计划”和中国科学院前沿科学重点研究计划等项目 的资助。