《突破 | 科学家实现512个量子位的中性原子体系》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-03-07
  • 近日,科学家在中性原子量子计算领域取得重大突破,首次实现具有512个量子位的双元素原子混合阵列。

    据了解,量子位作为量子计算机的基本构件,能够通过不同技术制成。其中一种技术是利用激光捕获中性原子以制造量子位,并在2018年获诺贝尔奖。相互作用可控、相干时间较长的中性单原子体系,具有在1平方毫米面积提供成千上万个量子位的规模化集成优势,是进行量子模拟和量子计算的有力候选者。

    此前,用于量子计算的中性原子体系只局限于单个原子元素阵列。但由于阵列中的每个原子都具有相同特性,因此要在不干扰相邻原子的情况下,测量单个原子是极其困难的。

    本次,芝加哥大学普利兹克分子工程学院助理教授Hannes Bernien所带领的团队创造了一个由铷原子和铯原子构成的双元素中性原子阵列,可以单独控制每个原子,实现了首个由512个量子位组成的中性原子体系。此项研究显著拓宽了中性原子体系在量子技术方面的潜在应用,相关成果近日发表在《物理评论X》(Physical Review X)。

    目前,谷歌和IBM公司的量子计算机由超导电路构成,只达到约130个量子位。尽管芝加哥大学团队的设备还不算是量子计算机,但由原子阵列制成的量子计算机将更容易扩大规模,带来一些新的突破。

    在由两种不同元素的原子组成的混合阵列中,相邻两个原子可以是不同元素,具有完全不同的频率。这使得研究人员更容易测量和操作单个原子,而不受周围原子的干扰。芝加哥大学团队使用512个光镊捕获铷原子、铯原子各256个,并观察到两个元素之间的干扰能够忽略不计。

    这项研究成果将有助于多方面的研究,包括量子非破坏性测量、量子纠错,以及持续运行的量子处理器和传感器。

    “当你用单一原子做这些实验时,在某个时刻,你会丢失原子,然后你得经常初始化系统,先制造一个新的冷原子云,并等待单个原子再次被激光捕获。”Bernien说,“而我们这种混合的设计,可以分别对这些元素进行实验。我们可以用一种元素原子做实验,同时刷新另一种元素原子,再切换过来,这样我们一直有可利用的量子位。”

    这种原子阵列的混合特性也为许多应用打开了大门,这些应用无法通过单一元素原子实现。例如,该研究中的两种元素独立可控,所以一种元素原子可用作量子存储器,而另一种元素原子可用于量子计算,分别扮演计算机的RAM(随机存取存储器)和CPU(中央处理器)的角色。Bernien表示,“我们的工作已经启发理论学家为此思考新的量子协议,这正是我所期望的。”

相关报告
  • 《突破 | 我国科学家在多个前沿科技领域实现关键核心技术新突破》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-02-14
    • 我国首次在超冷原子分子混合气中合成三原子分子 中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子分子混合气中首次合成三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出重要一步。该成果2月10日发表于《自然》。 量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位研究,因而在化学反应和新型材料设计中具有广泛的应用前景。 从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图 超冷分子将为实现量子计算打开新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。从原子和双原子分子的混合气中合成三原子分子,是合成分子领域的重要研究方向。 中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测,为合成三原子分子提供了新机遇。 在该项研究中,中国科学技术大学研究小组和中国科学院化学所研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到射频合成三原子分子信号,并测量了Feshbach共振附近三原子分子的束缚能。这一成果为量子模拟和超冷化学的研究开辟了一条新道路。 我国科学家建立蛋白质从头设计新方法 中国科学技术大学刘海燕教授、陈泉副教授团队基于数据驱动原理,开辟出一条全新的蛋白质从头设计路线,在蛋白质设计这一前沿科技领域实现了关键核心技术的原始创新,为工业酶、生物材料、生物医药蛋白等功能蛋白的设计奠定了坚实的基础。相关成果北京时间2月10日发表于《自然》。 蛋白质是生命的基础,是生命功能的主要执行者,其结构与功能由氨基酸序列所决定。目前,能够形成稳定三维结构的蛋白质,几乎全部是天然蛋白质,其氨基酸序列是长期自然进化形成。在天然蛋白结构功能不能满足工业或医疗应用需求时,想要得到特定的功能蛋白,就需要对其结构进行设计。近年来,国际上蛋白质从头设计的代表性工作主要采用RosettaDesign——使用天然结构片段作为构建模块来拼接产生人工结构。然而,这种方法存在设计结果单一、对主链结构细节过于敏感等不足,显著限制了设计主链结构的多样性和可变性。 中国科学技术大学相关团队长期深耕计算结构生物学方向的基础研究和应用基础研究。施蕴渝院士是国内这一领域的开拓者。刘海燕教授、陈泉副教授团队十余年来致力于发展数据驱动的蛋白质设计方法。该团队首先建立了给定主链结构设计氨基酸序列的ABACUS模型,进而发展了能在氨基酸序列待定时从头设计全新主链结构的SCUBA模型。理论计算和实验证明,用SCUBA设计主链结构,能够突破只能用天然片段来拼接产生新主链结构的限制,从而显著扩展从头设计蛋白的结构多样性,甚至设计出不同于已知天然蛋白的新颖结构。“SCUBA模型+ABACUS模型”构成了能够从头设计具有全新结构和序列的人工蛋白完整工具链,是RosettaDesign之外目前唯一经充分实验验证的蛋白质从头设计方法,并与之互为补充。在论文中,团队报道了9种从头设计的蛋白质分子的高分辨晶体结构,其中5种蛋白质具有不同于已知天然蛋白的新颖结构。 审稿人认为,这项工作中提出的方法具有足够的新颖性和实用性;从头设计蛋白质具有挑战性,本工作中6种不同蛋白质的高分辨率设计是一项重要成就,证明这种方法运行良好。 中国学者在笼目超导体中发现新型电子向列相 中国科学技术大学陈仙辉、吴涛和王震宇等组成的团队,近日在笼目超导体CsV3Sb5中发现一种新型电子向列相。该发现不仅为理解笼目结构超导体中电荷密度波与超导电性之间的反常竞争提供了重要实验证据,也为进一步研究关联电子体系中与非常规超导电性密切相关的交织序提供了新的研究方向。相关成果2月10日发表于《自然》。 电子向列相广泛存在于高温超导体、量子霍尔绝缘体等电子体系,与高温超导电性之间存在紧密联系,被认为是一种与高温超导相关联的交织序。探索具有新结构超导材料体系,从而进一步研究超导与各种交织序的关联是当前领域的一个重要研究方向,其中一类备受关注的体系为二维笼目结构。理论预测二维笼目体系可呈现出新奇的超导电性和丰富的电子有序态,但长期以来缺乏合适的材料体系实现其关联物理,笼目超导体CsV3Sb5的发现为该方向的探索提供新的研究体系。 笼目结构超导体中三重调制电荷密度波导致的电子向列序与超导电性的物理示意图 陈仙辉团队在前期研究中已成功揭示该体系中面内三重调制的电荷密度波态,以及电荷密度波与超导电性在压力下的反常竞争关系。 在此基础上,团队结合扫描隧道显微镜、核磁共振以及弹性电阻三种实验技术,发现体系在进入超导态之前,三重调制电荷密度波态会进一步演化为一种热力学稳定的电子向列相,并确定转变温度在35开尔文左右。新型电子向列相具有Z3对称性,在理论上被three state Potts模型所描述,因而又被称为“Potts”向列相。有趣的是,这种新型电子向列相近期在双层转角石墨烯体系中也被观察到。 这一成果不仅在笼目结构超导体中揭示了一种新型电子向列相,也为理解这类体系中超导与电荷密度波之间的竞争提供了实验证据。此前的扫描隧道谱研究表明,CsV3Sb5体系中可能存在超导电性与电荷密度波序相互交织而形成的配对密度波态(PDW)。在超导转变温度之上发现的电子向列序,可以被理解成一种与PDW相关的交织序,这一结果也为理解高温超导体中的PDW提供了重要线索和思路。
  • 《2019年科学突破奖公布 9位科学家分享2100万美元奖金》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-18
    • 科学界最慷慨的奖项——突破奖公布了2019年获奖者名单。生命科学、基础物理学(包括一项特别奖)、数学三个大奖的共7个奖项、2100万美金,授予了对治疗由基因原因引发的婴儿死亡、超高分辨率成像、新型的电子材料、发现脉冲星做出重大成就的9位科学家,其中华人科学家庄小威、陈志坚与其他三位科学家分享生命科学奖。 弗兰克·本内特(Frank Bennett)和阿德里安·克赖纳(Adrian Krainer),安吉丽卡·阿蒙(Angelika Amon), 庄小威, 以及陈志坚获得2019年突破奖生命科学奖。 查尔斯·凯恩(Charles Kane)与尤金·米尔(Eugene Mele)2019年突破奖基础物理学奖,乔斯琳·贝尔·伯内尔(Jocelyn Bell Burnell)获得基础物理学奖特别奖。 2019年突破奖数学奖被授予文森特·拉福格(Vincent Lafforgue)。 还有6位在物理学和数学领域处于事业早期阶段的杰出青年科学家获得了总计60万美元的“新视野”奖,其中包括中国数学家许晨阳。 所有的获奖者,包括前不久公布的基础物理特别突破奖得主乔斯琳·贝尔·伯内尔都将参加11月4号周日举行的全网直播颁奖典礼。 生命科学奖 C·弗兰克·本内特(C. Frank Bennett),来自 Ionis制药公司(Ionis Pharmaceuticals);阿德里安·R·克赖纳(Adrian R. Krainer),来自冷泉港实验室(Cold Spring Harbor Laboratory)。 获奖理由:开发出一种有效的反义寡核苷酸疗法,用于治疗患有神经退行性疾病脊髓性肌萎缩症(spinal muscular atrophy,SMA)的儿童。 脊髓性肌萎缩症是一种罕见但具有破坏性的疾病,是导致婴儿死亡的主要遗传病因。许多患有脊髓性肌萎缩症的孩子会在两岁前死去。现在,患上脊髓性肌萎缩症已不再意味着死亡。药理学家C·弗兰克·本内特和生物化学家阿德里安·R·克赖纳基于他们对反义技术和RNA剪接的自然过程的发现,研发出第一种治疗脊髓性肌萎缩症的药物——Nusinersen(商品名为Spinraza,由Biogen经销)。此种药物于2016年获得FDA批准,是目前正在研发中的首批针对家族性自主神经功能障碍(FD)、胶质母细胞瘤和肝癌的新型反义疗法之一。这项工作也为使用基因沉默新疗法治疗亨廷顿氏症、肌萎缩侧索硬化症、脊髓小脑性共济失调、帕金森病和阿尔茨海默病创造了可能。本内特的家人在美国新墨西哥州阿兹台克经营酒店,他在那里长大;但在辅导员的鼓励下,他转而追求药理学研究事业,致力于寻找治愈严重疾病的方法。 克赖纳是东欧后裔,在乌拉圭蒙得维的亚长大;他崇敬孟德尔的科研工作,在高中时期就对遗传学产生了兴趣。 2004年开始联手研究脊髓性肌萎缩症之前,本内特和克赖纳就已经熟悉了彼此的工作,目前他们继续着合作关系。 安吉丽卡·阿蒙(Angelika Amon),来自麻省理工学院和霍华德·休斯医学研究所。 获奖理由:明确非整倍性(aneuploidy)的影响,这是一种染色体数目异常,由染色体分裂错误导致。 多出一条染色体可能引发极其严重的后果(如唐氏综合征、流产等)。实际上,在所有的癌症种类中,有80%存在染色体多余或缺失。出生于维也纳的分子生物学家安吉莉卡·阿蒙证明,不规则的染色体数目(即非整倍性)引发了一种应激反应,干扰了细胞的故障保险和错误修复系统——这反过来又导致基因突变快速累积。她希望对非整倍性的理解能让我们更好地了解癌症发展,并有助于识别新的癌症治疗靶点。阿蒙的行事准则被她自己称为“奶奶测试”——一个想法必须能够被简单地解释,才能引起她的兴趣。她提出简单的问题,得到了不起的答案。 庄小威(Xiaowei Zhuang),来自哈佛大学和霍华德·休斯医学研究所。 获奖理由: 开发极高分辨率成像技术,发现细胞隐藏的内在结构,这种方法超越了光学显微镜的空间分辨率限制。 庄小威是个神童。六岁的时候,她就能认识到施加在一杯水上的大气压,这令她在中国顶尖科技类大学担任空气动力学教授的父亲印象深刻。多年后,在显微成像技术黄金时期的黎明,在斯坦福大学做博士后的她将对物理学的兴趣转向了生物成像和对生物系统的探索。在哈佛大学庄小威自己的实验室里,她发明了一种超高分辨率成像方法(即随机光学重构显微术,STORM),利用状态可切换的荧光分子打破了传统显微镜的衍射限制。实验得到了分子和细胞结构的超高分辨率图像,这些细胞和分子的大小只有人类头发直径的万分之一。借助STORM技术,她的实验室发现了原本未知的细胞结构,例如大脑中的神经元内部周期性的膜骨架。 陈志坚(Zhijian “James” Chen),来自得克萨斯大学西南医学中心和霍华德·休斯医学研究所。 获奖理由:阐明了DNA通过DNA感受酶cGAS从细胞内部触发免疫及自身免疫反应的机制。 T细胞和其他类型的白细胞是免疫系统的一线“斗士”。陈志坚的研究为我们揭开了一种基础性先天免疫系统的面纱——这一系统能够将我们身体中的每个细胞调动或者重启,从而去对抗来自病毒、应激、辐射或其他方面的损害。陈志坚的实验室证明:由入侵者携带进来的(或从细胞核渗透出的)DNA会被一种特定蛋白识别,最终激活T细胞和白细胞。他目前正在研究将这种强大力量化为己用的方法,以期阻止疾病(例如癌症)的发展;同时他也希望能够在这种力量走上“弯路”导致自身免疫疾病(例如关节炎和红斑狼疮)发生时,找到控制它的途径。陈志坚在中国福建省一个偏远的山村中长大,在童年时代就表现出了对大自然的天生好奇心,并受到父母的鼓励从事科学研究。他后来移民美国并在纽约州立大学布法罗分校获得博士学位。他认为科学没有国界,疾病是我们共同的敌人。 “生命科学突破奖的获奖者向我们展示了他们的杰出工作,”评委会主席柯里·巴格曼(Cori Bargmann)说。 “他们用创造、革新、坚持和技艺,给世界带来了以往难以想象的进步。” 基础物理学奖 查尔斯·凯恩(Charles Kane)和尤金·米尔(Eugene Mele),均来自宾夕法尼亚大学。 获奖理由:提出了物理学中关于拓扑学和对称性的新观点,并预测出一类表面导电、内部绝缘的新材料。 在本·富兰克林之后,我们一直根据物质能否导电,将其划分为导体和绝缘体。现在,凯恩和米尔的研究颠覆了这一观念。他们预测了一类新的物质——拓扑绝缘体(topological insulator)。这类物质内部是绝缘体,而表面却是良好的导体。拓扑绝缘体的发现对量子计算领域的“军备竞赛”有着重要意义,在此基础上,有可能研制出计算能源效率极高的新一代电子设备。拓扑绝缘体展现出与基本物理粒子(如电子、光子)类似的激发态,而且在实验室中的操控性也优于后者。因此,拓扑绝缘体为我们更深入地理解物质与能量的基本性质打开了一扇新窗口。这一联系也为我们提供了全新的概念框架,帮助我们控制不同物质状态中电荷、光甚至是机械波的流动。 此外,预期之外的应用同样值得期待。正如1947年晶体管刚刚诞生时,没有人能预料到,它引领了几十年后的信息技术革命,使得用小小的芯片存储太字节的数据成为现实。 “凯恩和米尔为量子物理中的拓扑学提出了新思路,”评委会主席爱德华·威滕说,“当故事展现在人们面前时,我们才意识到它有多么优美。” 数学奖 文森特·拉福格(Vincent Lafforgue),法国国家科学研究院,格勒诺布尔大学。 获奖理由:他在数学几个领域内的开创性工作,特别是函数域中对朗兰兹纲领的贡献。 一直以来,法国都盛产伟大的数学家。从笛卡尔、费马、帕斯卡到庞家莱,不一而足。到了近代,韦伊、塞尔、格罗滕迪克的工作为代数几何奠定了新基础,并从中诞生了算数几何。拉福格是算数几何领域的领袖,是密码学和信息安全技术新发现的核心人物。拉福格的学术研究在位于格勒诺布尔的法国国家科学研究院(CNRS)开展,这里是欧洲最大的基础科学研究机构。作为CNRS的终身教职拥有者,他能够自由地探索那些看似不可能的问题。出于对生态危机的深深担忧,现在拉福格的研究重点是将算子几何与量子力学结合,以及设计清洁能源的新材料。 “文森特·拉福格在函数域中发现了一个优美而直接的证明,”评委会主席理查德·泰勒说,“看到他的解释后,你会问自己,为什么这么久以来,所有人都与它擦肩而过。最终,你可以看到朗兰兹对应为什么必须存在,它不再只是复杂计算的动机不明的结论。” 科学突破特别奖——基础物理学奖 乔斯琳·贝尔·伯内尔(Jocelyn Bell Burnell),来自邓迪大学、牛津大学。 获奖理由:她对发现脉冲星做出了基础贡献,一生都是科学界鼓舞人心的领袖。 此外,还有6位在物理学和数学领域处于事业早期阶段的杰出青年科学家获得了总计60万美元的“新视野”奖,其中包括中国数学家许晨阳。 物理新视野奖 布赖恩·梅茨赫尔(Brian Metzger)-哥伦比亚大学。 获奖理由:他对中子星合并的电磁信号做出了开创性预测,领导了新兴的多信使天文学领域的发展。 拉娜·阿迪卡里(Rana Adhikari)-加州理工学院;莉萨·巴尔索蒂(Lisa Barsotti)-麻省理工学院;马修·埃文斯(Matthew Evans)-麻省理工学院。 获奖理由:为研究当前和未来的地面引力波探测器做出贡献。 丹尼尔·哈洛(Daniel Harlow)-麻省理工学院;丹尼尔·L·贾弗里斯(Daniel L. Jafferis)-哈佛大学;阿龙·沃尔(Aron Wall)-斯坦佛大学。 获奖理由:对于量子信息、量子场论和引力的基本理论做出贡献。 数学新视野奖 许晨阳 -麻省理工学院、北京国际数学研究中心。 获奖理由:为最小模型程序(minimal model program)和代数簇的模( moduli of algebraic varieties)的应用的研究进展做出主要贡献。 卡里姆·阿迪普拉斯托(Karim Adiprasito)-耶路撒冷希伯来大学;琼·于(June Huh)-高等研究院。 获奖理由:他们与埃里克·卡茨(Eric Katz)合作发展了组合霍奇理论(combinatorial Hodge theory),罗塔猜测(conjecture of Rota)的对数凹因此得以解出。 凯萨·马托玛奇(Kaisa Matomäki)-图尔库大学;马克瑟姆·拉齐维尔(Maksym Radziwill)-加州理工学院。 获奖理由:他们在理解积性函数值的局部相关性上做出了基本突破。 关于科学突破奖 科学突破奖用以表彰全世界最杰出的科学家,这是科学突破奖颁发的第七个年头。科学突破奖分为生命科学奖(每年最多四个奖项)、基础物理奖(每年一个奖项)以及数学奖(每年一个奖项),每个奖项的奖金为三百万美元。此外,每年还会有不超过三个物理新视野奖以及不超过三个数学新视野奖,用以表彰年轻的科研工作者。获奖者将参加全程直播的颁奖典礼用以表彰他们的杰出成就同时启发下一代科学家。做为典礼的一部分,获奖者也会参加主办方组织的讲座以及论坛。 科学突破奖的奖金由谷歌公司创始人之一谢尔盖·布林、Facebook创始人马克·扎克伯格及其妻子,腾讯创始人马化腾, 互联网投资公司DST GLobal创始人尤里·米尔纳及茱莉亚·米尔纳,23andMe创始人安妮·沃希斯基共同赞助。其评审委员会由之前在各个领域的获奖者组成。 2019年突破奖和新视野奖的获奖人将在第七届突破奖年度颁奖典礼上被授予奖项。突破奖颁奖典礼被誉为“科学界的奥斯卡”,今年将由著名演员、制片人和慈善家皮尔斯布·鲁斯南主持。颁奖典礼将于11月4日,在加利福利亚山景城的NASA埃姆斯研究中心举行, 国家地理频道将进行直播。 突破奖被誉为全世界最慷慨的科学奖,单奖为三百万美金。 该奖项已举办第七个年头,旨在表彰生命科学,基础物理和数学方面的成就,这些学科提出最终极的问题,并寻求最深刻的答案。