《突破 | 我国科学家在多个前沿科技领域实现关键核心技术新突破》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2022-02-14
  • 我国首次在超冷原子分子混合气中合成三原子分子

    中国科学技术大学潘建伟、赵博等与中国科学院化学所白春礼小组合作,在超冷原子分子混合气中首次合成三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出重要一步。该成果2月10日发表于《自然》。

    量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位研究,因而在化学反应和新型材料设计中具有广泛的应用前景。

    从超冷原子和双原子分子混合气中利用射频场合成三原子分子的示意图

    超冷分子将为实现量子计算打开新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子非常困难。超冷原子技术的发展为制备超冷分子提供了一条新途径。人们可以绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。从原子和双原子分子的混合气中合成三原子分子,是合成分子领域的重要研究方向。

    中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的成功观测,为合成三原子分子提供了新机遇。

    在该项研究中,中国科学技术大学研究小组和中国科学院化学所研究小组合作,首次成功实现了利用射频场相干合成三原子分子。在实验中,他们从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。他们成功地在钠钾分子的射频损失谱上观测到射频合成三原子分子信号,并测量了Feshbach共振附近三原子分子的束缚能。这一成果为量子模拟和超冷化学的研究开辟了一条新道路。

    我国科学家建立蛋白质从头设计新方法

    中国科学技术大学刘海燕教授、陈泉副教授团队基于数据驱动原理,开辟出一条全新的蛋白质从头设计路线,在蛋白质设计这一前沿科技领域实现了关键核心技术的原始创新,为工业酶、生物材料、生物医药蛋白等功能蛋白的设计奠定了坚实的基础。相关成果北京时间2月10日发表于《自然》。

    蛋白质是生命的基础,是生命功能的主要执行者,其结构与功能由氨基酸序列所决定。目前,能够形成稳定三维结构的蛋白质,几乎全部是天然蛋白质,其氨基酸序列是长期自然进化形成。在天然蛋白结构功能不能满足工业或医疗应用需求时,想要得到特定的功能蛋白,就需要对其结构进行设计。近年来,国际上蛋白质从头设计的代表性工作主要采用RosettaDesign——使用天然结构片段作为构建模块来拼接产生人工结构。然而,这种方法存在设计结果单一、对主链结构细节过于敏感等不足,显著限制了设计主链结构的多样性和可变性。

    中国科学技术大学相关团队长期深耕计算结构生物学方向的基础研究和应用基础研究。施蕴渝院士是国内这一领域的开拓者。刘海燕教授、陈泉副教授团队十余年来致力于发展数据驱动的蛋白质设计方法。该团队首先建立了给定主链结构设计氨基酸序列的ABACUS模型,进而发展了能在氨基酸序列待定时从头设计全新主链结构的SCUBA模型。理论计算和实验证明,用SCUBA设计主链结构,能够突破只能用天然片段来拼接产生新主链结构的限制,从而显著扩展从头设计蛋白的结构多样性,甚至设计出不同于已知天然蛋白的新颖结构。“SCUBA模型+ABACUS模型”构成了能够从头设计具有全新结构和序列的人工蛋白完整工具链,是RosettaDesign之外目前唯一经充分实验验证的蛋白质从头设计方法,并与之互为补充。在论文中,团队报道了9种从头设计的蛋白质分子的高分辨晶体结构,其中5种蛋白质具有不同于已知天然蛋白的新颖结构。

    审稿人认为,这项工作中提出的方法具有足够的新颖性和实用性;从头设计蛋白质具有挑战性,本工作中6种不同蛋白质的高分辨率设计是一项重要成就,证明这种方法运行良好。

    中国学者在笼目超导体中发现新型电子向列相

    中国科学技术大学陈仙辉、吴涛和王震宇等组成的团队,近日在笼目超导体CsV3Sb5中发现一种新型电子向列相。该发现不仅为理解笼目结构超导体中电荷密度波与超导电性之间的反常竞争提供了重要实验证据,也为进一步研究关联电子体系中与非常规超导电性密切相关的交织序提供了新的研究方向。相关成果2月10日发表于《自然》。

    电子向列相广泛存在于高温超导体、量子霍尔绝缘体等电子体系,与高温超导电性之间存在紧密联系,被认为是一种与高温超导相关联的交织序。探索具有新结构超导材料体系,从而进一步研究超导与各种交织序的关联是当前领域的一个重要研究方向,其中一类备受关注的体系为二维笼目结构。理论预测二维笼目体系可呈现出新奇的超导电性和丰富的电子有序态,但长期以来缺乏合适的材料体系实现其关联物理,笼目超导体CsV3Sb5的发现为该方向的探索提供新的研究体系。

    笼目结构超导体中三重调制电荷密度波导致的电子向列序与超导电性的物理示意图

    陈仙辉团队在前期研究中已成功揭示该体系中面内三重调制的电荷密度波态,以及电荷密度波与超导电性在压力下的反常竞争关系。

    在此基础上,团队结合扫描隧道显微镜、核磁共振以及弹性电阻三种实验技术,发现体系在进入超导态之前,三重调制电荷密度波态会进一步演化为一种热力学稳定的电子向列相,并确定转变温度在35开尔文左右。新型电子向列相具有Z3对称性,在理论上被three state Potts模型所描述,因而又被称为“Potts”向列相。有趣的是,这种新型电子向列相近期在双层转角石墨烯体系中也被观察到。

    这一成果不仅在笼目结构超导体中揭示了一种新型电子向列相,也为理解这类体系中超导与电荷密度波之间的竞争提供了实验证据。此前的扫描隧道谱研究表明,CsV3Sb5体系中可能存在超导电性与电荷密度波序相互交织而形成的配对密度波态(PDW)。在超导转变温度之上发现的电子向列序,可以被理解成一种与PDW相关的交织序,这一结果也为理解高温超导体中的PDW提供了重要线索和思路。

相关报告
  • 《我国油气领域关键核心技术旋转地质导向获突破》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-11-15
    • 11月11日,据中国石化新闻办消息,近日,中石化经纬有限公司自主研发的经纬旋转地质导向钻井系统被专家组鉴定为“整体达到国际先进水平”。该系统成本较国际同类型产品降低了50%,研发制造过程涉及十几个领域,被称为石油工程技术“皇冠上的明珠”。自2021年首次在涪陵页岩气地区应用成功以来,该系统已实现多场景规模化应用,突破了国外技术壁垒,有效推进高端装备国产化,确保石油工程领域关键核心技术自主可控。 经由5名院士参加的专家组鉴定:经纬旋转地质导向钻井系统整体达到国际先进水平,其中导向头工具面测量精度、方位电阻率测量精度达到国际领先水平。 旋转地质导向钻井系统是石油工程领域最前沿、最高端的技术装备,是实现地质目标、提高油气钻遇率、降本增效的关键利器。它可以在钻柱旋转钻进时,使钻头实时完成方向控制功能。简单而言,就是给钻头在地下装上“眼睛”,如同“贪吃蛇”般自由转身,更能像巡航导弹一样自动寻找目标、多靶点命中。该系统能够承受井下165摄氏度、140兆帕的高温高压,具备可靠性高、适应范围广、多参数测量、测录导互补、精准控制轨迹、成本优势明显等多项特点。目前,该系统已在川渝页岩气、胜利济阳页岩油、渤海湾近海海油陆采、东部复杂结构井等应用65口井,累计工作逾5600小时,累计进尺超4万米,储层钻遇率96%。 中国石化高度重视石油工程领域关键核心技术自主可控。自1999年我国把旋转地质导向前瞻性研究列入国家“863计划”以来,中国石化科研团队先后完成近6000个电子元器件、31个井下测量控制程序固件的制造定型和升级迭代,编写56万行代码,攻破9项核心技术,形成4项创新成果和4项创新点,终于研发出媲美国际同行的产品。
  • 《我国科学家在“连续变量”集成光量子芯片领域实现新突破》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-21
    • 我国量子科技研究迎来突破性进展。《自然》杂志20日发布一项重要研究成果,我国科研团队成功实现全球首例基于集成光量子芯片的“连续变量”量子纠缠簇态。相关专家表示,这一成果填补了采用连续变量编码方式的光量子芯片关键技术空白,也为光量子芯片的大规模扩展及其在量子计算、量子网络等领域的应用奠定重要基础。 集成光量子芯片是一种能在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。如何在光量子芯片上实现大规模量子纠缠是国际量子研究难题。量子纠缠簇态作为一种典型的多比特量子纠缠态,是量子信息科学的核心资源,然而其确定性、大规模制备面临巨大实验困难,尤其连续变量簇态的光量子芯片的制备和验证技术在国际上仍属空白。 经多年攻关,北京大学教授王剑威、龚旗煌和山西大学教授苏晓龙等带领的研究团队,成功攻克关键技术瓶颈,创新性发展了连续变量光量子芯片调控、多色相干泵浦与探测技术,实现了确定性、可重构的纠缠簇态制备,并对簇态纠缠结构进行实验验证。 王剑威介绍,量子比特可分别通过离散变量编码、连续变量编码方式在光量子芯片上实现。为制备出具有超高保真度的量子比特,以往通常采用基于单光子的离散变量编码方式,但该方法的成功率随量子比特数增加呈指数下降。为此,团队采用基于光场的连续变量编码方式,破解了制备量子比特和量子纠缠的“概率”难题,首次实现了量子纠缠簇态在芯片上的“确定性”产生。 “这是我国科学家在集成光量子芯片技术领域取得的新突破。”龚旗煌表示,这一原创成果为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有重要意义。 《自然》杂志审稿人评价称:“这项工作首次在光量子芯片上实现多比特的连续变量量子纠缠,是可扩展光量子信息处理的重要里程碑。”