《纳米级的液态金》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-06-17
  • 斯旺西大学的研究人员已经发现了纳米尺度上液体金的样子 - 并且这样做已经描绘了纳米粒子融化的方式,这与生物传感器,纳米芯片,气体传感器等纳米技术设备的制造和性能相关。和催化剂。

    发表在Nature Communications上的研究开始回答一个简单的问题 - 纳米粒子是如何融化的?尽管这个问题在过去的一个世纪里一直是研究人员关注的焦点,但它仍然是一个悬而未决的问题 - 最初的理论模型描述了大约100年的熔化日期,甚至最相关的模型大约有50年的历史。

    负责该大学工程学院团队的理查德帕尔默教授对这项研究表示:“尽管已知熔化行为会在纳米尺度上发生变化,但纳米粒子融化的方式却是一个悬而未决的问题。鉴于理论模型现在已经存在。相当古老,有一个明显的例子,我们可以进行新的成像实验,看看我们是否可以测试和改进这些理论模型。“

    研究小组在他们的实验中使用了黄金作为贵金属和其他金属的模型系统。该团队通过像差校正扫描透射电子显微镜对直径范围为2至5纳米的金纳米粒子进行成像,得出了他们的结果。他们的观察后来得到了大规模量子力学模拟的支持。

    帕尔默教授说:“我们能够证明纳米粒子的熔点对其尺寸的依赖性,并且首次直接看到在高温区域内纳米粒子中固体核心周围形成液体壳,实际上是几百度。

    “这有助于我们准确描述纳米粒子如何融化并预测它们在高温下的行为。这是我们都可以涉及的领域的科学突破 - 熔化 - 并且还将帮助那些生产纳米技术设备的科学突破和日常用途,包括医药,催化和电子产品。“

    ——文章发布于2019年6月13日

相关报告
  • 《使用“纳米探测器”运载和释放纳米级货物》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-01-08
    • 在这个假日季节,位于布鲁克海文国家实验室(Brookhaven National Laboratory)的美国能源部科学用户设施功能纳米材料中心(CFN)的科学家们包装了一种不同的盒子。通过一步化学合成的方法,他们设计出了带有立方体孔洞的中空金属纳米盒,并演示了如何使用这些“纳米板”以可控的方式携带和释放dna涂层的纳米颗粒。这项研究发表在12月12日的美国化学学会(ACS)期刊《ACS中心科学》(ACS Central Science)上。 “想象一下,你有一个盒子,但你只能使用外部,不能使用内部,”该研究的合著者、CFN软件和生物纳米材料小组负责人奥列格·冈(Oleg Gang)说。“这就是我们处理纳米颗粒的方法。大多数纳米颗粒组装或合成方法产生固体纳米结构。我们需要方法来设计这些结构的内部空间。 “与固体纳米结构相比,空心纳米结构具有不同的光学和化学性质,我们希望将其用于生物医学、传感和催化应用,”该研究小组的科学家、通讯作者方璐(音译)补充道。“此外,我们还可以在中空结构中引入表面开口,药物、生物分子甚至纳米颗粒等材料可以根据周围环境进入和退出。” 合成策略已经发展到产生具有表面孔隙的中空纳米结构,但通常这些孔隙的大小、形状和位置无法很好地控制。气孔在表面随机分布,形成瑞士奶酪样的结构。为了在实际应用中使用纳米结构,例如加载和释放纳米碳,需要对表面开口进行高度控制。 在这项研究中,科学家们展示了一种新的方法,可以从固体纳米粒子中通过化学方法雕刻出带有立方体角孔的金银合金纳米薄片。他们使用了一种被称为纳米级电流置换的化学反应。在这个反应中,银纳米层中的原子在室温下被水溶液中的金离子所取代。科学家们在溶液中加入了一种分子(表面活性剂,或称表面封盖剂)来指导银的浸出和金在特定晶体表面的沉积。 “立方体表面的原子与角落里的原子排列不同,因此不同的原子平面暴露出来,所以电流反应在两个区域可能不会以相同的方式进行,”卢解释说。“我们选择的表面活性剂与银表面的结合刚刚好——不要太强或太弱——这样金和银就能相互作用。”另外,表面活性剂对银立方体角部的吸收相对较弱,反应在此最为活跃。银从它的边缘被“吃掉”,形成角孔,而金沉积在表面的其他部分,形成一个金和银的外壳。 为了在3个多小时的反应过程中,在3-D的纳米尺度和2-D的原子水平上捕捉到整个结构的结构和化学组成的变化,科学家们使用了CFN的电子显微镜。能量色散x射线能谱元素映射的二维电子显微镜图像证实了立方体是中空的,由一种金-银合金组成。他们通过电子断层扫描得到的三维图像显示,这些空心立方体的棱角处有大的立方体形状的孔。 Gang说:“在电子断层扫描技术中,从不同角度收集的二维图像被组合在一起,以重建三维物体的图像。”“这项技术类似于CT(计算机断层扫描)扫描,用于成像人体内部结构,但其规模要小得多,而且使用电子而不是x射线。” 科学家们还通过光谱实验捕捉光学变化,证实了纳米探测器向纳米探测器的转变。光谱分析表明,纳米板的光学吸收随反应时间的变化而变化。在它们的最终状态,纳米探测器吸收红外线。 Gang说:“吸收光谱在1250纳米处达到峰值,这是纳米级金或银的最长波长之一。”通常,金和银纳米结构吸收可见光。然而,对于各种应用,我们希望这些粒子能够吸收红外线——例如,在生物医学应用中,如光疗。 利用合成的纳米薄片,科学家们展示了如何通过改变溶液中盐的浓度,将大小合适的包裹着DNA的球形金纳米颗粒加载并从角落的开口释放出来。DNA是带负电荷的(由于其磷酸盐骨架中的氧原子),它的结构会随着正离子(如盐)浓度的增加或减少而改变。在高盐浓度下,DNA链收缩,因为它们的排斥力被盐离子降低。在低盐浓度下,DNA链会因为排斥力的作用而拉伸。 当DNA链收缩时,纳米颗粒变得足够小,可以放入开口并进入空腔。然后,通过降低盐浓度,纳米颗粒可以被锁定在nanowrapper内。在这个较低的浓度下,DNA链会拉伸,从而使纳米颗粒过大,无法通过毛孔。纳米颗粒可以通过一个相反的过程离开结构,即增加和减少盐的浓度。 “我们的电子显微镜和光谱学研究证实,纳米板可以用来加载和释放纳米尺度的组件,”卢说。“原则上,它们可以用于在特定环境中释放具有光学或化学活性的纳米颗粒,可能通过改变pH或温度等其他参数来实现。” 未来,科学家们有兴趣将纳米板组装成更大规模的结构,将他们的方法扩展到其他双金属系统,并比较纳米板的内部和外部催化活性。 Gang说:“我们没想到会看到如此规则、清晰的洞。”“通常,这种级别的控制对于纳米级的物体来说是很难实现的。因此,我们发现这种纳米结构形成的新途径是非常令人兴奋的。设计具有高度控制能力的纳米物体的能力不仅对理解某些过程发生的原因很重要,而且对构建用于各种应用的目标纳米结构也很重要,从纳米医学和光学到智能材料和催化。我们的新合成方法在这些领域开辟了独特的机遇。 CFN主任查尔斯·布莱克说:“这项工作之所以成为可能,是因为CFN在纳米材料合成方面拥有世界一流的专业知识和能力。”“特别是CFN在通过组装纳米级元件合成新材料方面拥有领先的项目,以及研究这些材料的三维结构及其与光的相互作用的最先进的电子显微镜和光谱学能力。”通过CFN用户程序,纳米科学研究社区可以使用所有这些特性功能。我们期待着看到纳米组装技术的进步,因为学术界、工业界和政府的科学家们都在利用他们的研究能力。 ——文章发布于2019年1月3日
  • 《梳理纳米线》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-07-03
    • 我们的细胞让机器变得舒适。可嵌入传感器记录神经元如何以及何时发射;电极激发心脏细胞击败或脑细胞射击;类神经元装置甚至可以促进植入大脑后更快的再生长。 很快,所谓的脑机界面可以做得更多:监测和治疗帕金森病等神经系统疾病的症状,提供设计人工智能的蓝图,甚至可以实现脑 - 脑通信。 为了实现可达到的和不切实际的,设备需要一种方法来逐字深入我们的细胞以进行侦察。我们对神经元如何工作的了解越多,我们就越能用我们的机器模拟,复制和处理它们。 现在,在Nature Nanotechnology上发表的一篇论文中,Joshua和Beth Friedman大学教授Charles M. Lieber介绍了他最初用于细胞内记录的纳米级设备的更新,这是第一个用于记录活细胞内电子颤动的纳米技术。九年后,利伯和他的团队设计了一种方法,可以同时制造数千种这样的设备,创建一支纳米级军队,可以加快努力,找出我们细胞内发生的事情。 在利伯的工作之前,类似的设备面临着金发姑娘的难题:太大了,他们会记录内部信号但杀死牢房。太小了,他们没能穿过细胞膜 - 录音结果嘈杂而且不精确。 利伯的新纳米线恰到好处。在2010年设计和报告,原件有一个纳米级“V”形尖端,在“V”底部有一个晶体管。这种设计可以穿透细胞膜,并在不破坏细胞的情况下将准确的数据发送回团队。 但有一个问题。硅纳米线的长度远远超过它们的宽度,使得它们摇摆不定并且难以缠结。 “它们和煮熟的面条一样灵活,”Lieber实验室的研究生Anqi Zhuang说道,他是该团队最新工作的作者之一。 为了制造原始设备,实验室成员必须同时捕获一条纳米线面条,找到“V”的每个臂,然后将线编织到记录设备中。一对设备用了2到3个星期。 “这是非常繁琐的工作,”庄说。 但纳米线一次不制成一个;它们就像它们类似的东西一样集中制造:熟意大利面。利用利伯用于制造第一根纳米线的纳米团簇催化气 - 液 - 固方法,该团队建立了一个环境,使电线可以自行发芽。它们可以预先确定每根导线的直径和长度,但不能预先确定导线的位置。即使它们一次生长数千甚至数百万纳米线,最终的结果却是一堆看不见的意大利面条。 为了解开这个烂摊子,利伯和他的团队为他们松散的煮熟的面条设计了一个陷阱:他们在硅片上制作U形沟,然后在表面上梳理纳米线。这种“梳理”过程解开了混乱,并将每根纳米线沉积成一个整齐的U形孔。然后,每条“U”曲线都得到一个微小的晶体管,类似于它们的“V”形器件的底部。 通过“梳理”方法,利伯和他的团队在相同的时间内完成了数百个纳米线设备。 “因为它们非常一致,所以它们很容易控制,”张说。 到目前为止,张和她的同事们已经使用“U”形纳米级装置记录培养物中神经细胞和心脏细胞的细胞内信号。涂有模仿细胞膜感觉的物质,纳米线可以最小的努力或对细胞的损害穿过这个屏障。并且,它们可以记录与其最大竞争对手相同的精确度的细胞内颤振:膜片钳电极。 贴片钳电极比纳米线大约100倍。顾名思义,该工具会夹住细胞膜,造成不可逆转的损害。膜片钳电极可以捕获细胞内电信号的稳定记录。但是,张说,“记录后,细胞就会死亡。” Lieber团队的“U”形纳米级设备对其细胞宿主更友好。 “它们可以并行插入多个细胞而不会造成损害,”张说。 现在,这些设备非常温和,在记录约10分钟后,细胞膜会将它们推出。为了扩展这个窗口的下一个设计,团队可能会在尖端添加一些生化胶水或使边缘变粗糙,以便导线接近膜。 纳米级器件相对于膜片钳具有另一个优势:它们可以并行记录更多细胞。使用夹具,研究人员可以一次只收集一些细胞记录。在这项研究中,张一次记录了多达10个细胞。 “可能会有更多,”她说。他们一次可以记录的细胞越多,他们就越能看到细胞网络如何在生物中相互作用。 在扩展纳米线设计的过程中,该团队也碰巧证实了一个长期存在的理论,称为曲率假设。在利伯发明了第一批纳米线之后,研究人员推测纳米线尖端的宽度(“V”或“U”的底部)会影响电池对电线的响应。在这项研究中,该团队尝试了多条“U”曲线和晶体管尺寸。结果证实了最初的假设:细胞像一个狭窄的尖端和一个小晶体管。 “包括我们自己在内的许多科学之美在推动假设和未来工作方面面临着诸多挑战,”利伯说。随着它们背后的可扩展性挑战,该团队希望捕获更精确的记录,可能是在亚细胞结构内,并记录生物中的细胞。 但对于利伯来说,一个脑机挑战比其他所有人更具吸引力:“将机器人带入现实。” ——文章发布于2019年7月1日