《传统能源仍在稳定供应中发挥压轴作用》

  • 来源专题:能源情报网信息监测服务平台
  • 编译者: guokm
  • 发布时间:2022-05-24
  • ——从《中国煤炭、电力及碳市场年度报告》看行业发展态势

    2021年是能源市场波动最为剧烈的年份之一。我国煤炭电力阶段性供应紧张问题突出,煤炭等能源价格创多年来新高。党中央、国务院有力推动能源安全保供,我国全年能源经济总体向好,能源市场强势攀升后回稳,传统能源行业仍在能源稳定供应中发挥重大作用。

    国家能源集团近日发布了《中国煤炭、电力及碳市场年度报告》(简称《报告》),从煤炭、电力和碳市场3个方面回顾了2021年能源发展情况,并对2022年发展趋势作出预测。

    在煤炭市场方面,《报告》称,2022年预计国民经济发展前低后高,稳中有进。煤炭需求仍有增长,经济持续稳定恢复推动电煤需求保持强劲,高油价驱动煤化工生产热情,基建适度超前发力促使钢铁建材用煤维持刚需,预计全年煤炭消费量达到43.7亿吨(30亿吨标准煤),继续刷新峰值。

    在碳市场方面,《报告》认为,2022年,俄乌冲突对地缘政治格局和国际经济贸易走势产生不可预见性的影响,尤其将进一步加剧短期内全球能源供需紧张局势,2022年能源价格或将延续上涨态势,为碳价格走势增添较大不确定性。

    煤炭将继续发挥市场“稳定器”作用

    去年我国煤炭产量、进口量、消费量和价格均创近年或历史新高。

    《报告》称,2021年,尽管煤炭供需总量基本平衡,但时段性供需矛盾带来煤炭市场剧烈波动。10月下旬伴随着强有力的增产保供,煤价快速理性回归。

    在生产方面,2021年,煤炭主体能源地位进一步明确,全年能源保供任务艰巨,在多方共同努力下有效发挥了能源“压舱石”“稳定器”的作用,全年煤炭产量达到41.3亿吨,同比增长5.7%,并创历史新高,为做好“六稳”“六保”工作、推进经济社会高质量发展提供坚强保障。

    在进口方面,煤炭进口量先低后高,全年进口创2014年以来新高。2021年,进口煤炭3.23亿吨,同比增长6.6%,仅次于2013年的3.27亿吨。全年煤炭净进口3.21亿吨,创历史新高。

    在消费方面,煤炭消费超预期增长,出现新峰值。2021年,我国统筹疫情防控和经济社会发展,宏观经济持续复苏向好,出口维持景气,能源需求快速增长,全社会用电量稳步提升,终端工业用煤继续释放,拉动煤炭需求超预期增长。全年煤炭消费42.7亿吨,同比增长5%,占一次能源消费总量的56%,较上年下降0.9个百分点;折标准煤29.34亿吨,成为新的峰值。

    《报告》分析,预计2022年,煤炭产能将有较明显的提升。上年2.2亿吨永久核增产能将会全面释放,1亿吨应急核增产能随保供政策延续将继续发挥作用,加之国家发改委还提出采取综合措施增加3亿吨有效产能,“保供给,稳价格,强储备”基础更为牢固,预计全年煤炭产量达到43亿吨的新高。受地缘政治和国际贸易形势变化影响,进口煤不确定性增加,预计2.5亿~3亿吨。综合来看,2022年,我国煤炭市场基本可以实现供需平衡,同时也有能力在日益复杂的国际能源供需环境中保持相对稳定,并在全球煤炭市场中发挥重要影响力。在港口和产地煤价“合理区间”等措施引导下,2022年煤炭市场价格中枢将出现一定幅度回归,预计在年初冲高回落后趋稳运行,波动幅度趋窄。中长协基准价由每吨535元上升至每吨675元,将在新的供需环境下推动长协煤价稳中有升,并继续发挥市场“稳定器”作用。

    国内碳交易市场发展潜力巨大

    建立全国碳排放权交易市场是实现碳达峰、碳中和目标的重要政策工具。2021年7月16日,全国碳市场正式上线交易。截至2021年12月31日,全国碳市场第一个履约周期顺利收官。

    《报告》称,全国碳市场首个履约期内碳价格走势总体平稳,市场活跃度先冷后热。全国碳市场正式上线交易当天,由主管部门设定48元/吨的开盘价,但较五大电力集团的心理预期价位( 20元~30元/吨)明显偏高。开盘当天,共计成交410.4万吨,总成交额超2.1亿元。进入8月,碳市在经历开市短暂的上涨后开始缩量下跌,并在当月底首次“破发”。到9月,碳价持续下跌至42元/吨。10月,碳价小幅上行后持续下跌,但日均交易量呈稳步上涨态势。11月,碳价稳定在42元~43元/吨,当月累计成交2303万吨,超过前4个月的总和。12月,碳价稳步上涨,单日成交量在500万~1000万吨,交易活跃程度远超其他月份。

    但同欧盟、美国等发达国家相比,我国仍是一个发展中国家,能源消费和碳排放仍处于增长阶段,且能源消费以高碳能源为主,协调经济增长和碳减排的难度较大,市场基本制度和交易机制有待进一步完善,全国碳市场在运行过程中还面临诸多问题。

    一是缺乏顶层法律支持。碳排放权交易需要建立强有力的法律法规来保证交易、履约的顺利进行。当前,全国碳市场的法律依据为生态环境部发布的《碳排放权交易管理办法(试行)》,对未如期完成清缴履约的控排企业,受限于行政罚款规定仅能执行在2万元以上3万元以下的罚款,同数十万、数百万的配额购买成本相比微乎其微。因此,对数据造假、违规交易等行为尚不能进行强有力的处罚。为此,生态环境部于2021年3月30日发布《碳排放权交易管理暂行条例(草案修改稿)》,要求进一步加强跨部门联合监管、明确长远的配额总量制定和分配,并提出更为严格的违规处罚。《报告》预计,《碳排放权交易管理暂行条例》有望于2022年正式发布,并将为我国碳市场建设提供强有力的法律保障。

    二是数据质量有待提升。目前,各地核查机构能力参差不齐,部分核查机构甚至无法判断企业的数据是否准确,更有企业面对利益诱惑铤而走险,篡改燃料的碳元素检测报告,试图通过篡改数据降低企业的碳排放量。究其原因,一方面,当前的惩罚力度还不够,惩罚范围不能仅局限于造假企业,对帮助其造假的中介服务机构也有必要进行惩罚;惩罚方式不能仅局限于直接罚款,也可以对相关企业、核查机构的声誉进行惩罚。另一方面,当前企业排放数据和信息的透明度还有待提升,《报告》认为,亟需建立信息公开平台,并采取统一的规定和指导,明确公开配额总量、排放总量等关键信息,提升信息和数据透明度,接受更广泛的社会监督。此外,《报告》表示,政府可以借助其他碳排放量化方法(如连续监测)对核算结果进行验证,确保数据可靠性及维护碳市场公平公正和健康可持续发展。

    三是监管制度有待完善。政府监管方面,MRV体系作为对碳交易数据进行监管的关键环节,但当前还存在诸多需要进一步完善的地方。为此,《报告》建议有关部门严格规范数据报送与核查管理,加强核查机构、核查人员的资质管理和能力建设,强化对信息造假相关行为的处罚力度,确保企业碳排放数据的准确可靠。

    《报告》分析称,展望2022年,国内碳市场将进一步加快相关制度体系的建设与完善,通过立法进一步明确碳市场的作用和地位,将为我国碳市场建设提供更高层次、更加清晰坚实的法律保障。随着全国碳市场控排规模和减排需求的逐步扩大,全国CCER项目备案和减排量签发有望加速重启。(来源:中国矿业报 记者 马晓敏)

  • 原文来源:http://www.cnenergynews.cn/guonei/2022/05/23/detail_20220523124155.html
相关报告
  • 《德国煤炭电厂正在发挥替代作用》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-10-26
    • 自俄乌冲突发生以来,欧洲遭遇能源危机,而严重依赖俄罗斯能源供应的德国更是受到强烈冲击。目前,欧洲多国政府采取紧急行动补充天然气储备,为未来几个月的寒冬做准备。在德国煤炭电厂装机量稳定的情况下,德国只有通过提高煤电装置发电小时数以弥补天然气发电损失量。   A 德国电力系统的改革初见成效 德国电力系统的供给侧改革以《2050德国气候环境行动法案》的基本原则来展开,其中,最主要的特点就是可再生能源从装机量和发电量来看已经明显超过化石能源。 从装机量来看,2020年德国发电装机量达到233.8吉瓦,较2014年的196.40吉瓦增加37.40吉瓦,年均增长2.52%。其中,2020年可再生能源装机量130.60吉瓦,较2014年的90.3吉瓦增加40.3吉瓦,年均增长5.41%,可再生能源装机量占发电装机总量的比例也从2014年的46%提升至2020年的56%。与此同时,核能发电和煤炭发电装机量显著下降。核能发电装机量从2014年的12.1吉瓦下降至2020年的8.1吉瓦,同时自日本福岛核电站事故后,德国政府计划在2022年淘汰全部核能发电厂,但目前来看仍然没有结束对核能发电的依赖。煤炭电厂发电装机量占总发电量的比例从2014年的24.08%下降至2020年的19%;煤炭发电装机量从2014年的47.30吉瓦下降至2020年的44.4吉瓦。2020年,无烟煤发电装机量较2019年增加1.1吉瓦,这主要是因为德国Datteln 4发电机组上线运行,其装机量达到1052兆瓦。 从发电量来看,2021年德国总发电量582.90亿千瓦时,与2014年的583.3亿千瓦时基本持平,2016年和2017年发电量最高值达到601.3亿千瓦时和601.30亿千瓦时。2021年可再生能源发电量233.60亿千瓦时,较2014年的154.8亿千瓦时增加78.80亿千瓦时,年均增长20.85%,可再生能源发电量占总发电量的比例也从2014年的26.53%提升至2021年的39.70%。煤炭发电装机量显著下降,从2014年的256.1亿千瓦时下降至2021年的165亿千瓦时,煤炭电厂发电量占总发电量的比例从2014年的43.91%下降至2020年的28.10%。 2021年年底欧洲可再生能源发电量不足叠加2022年俄乌冲突引发的能源供需博弈,加剧了欧洲天然气供给短缺,德国天然气发电也陷入尴尬处境。 2014年到2020年,德国天然气发电装机量仅仅从29吉瓦增长至31.70吉瓦,但发电量已经从50亿千瓦时增长至81亿千瓦时。装机量和发电量数据变化的迥异反映出德国在这7年间对天然气能源的依赖程度大幅提高,天然气发电量占总量发电的比例也从2014年的8.51%提高到2021年的15.20%。 在2018年计划淘汰全部煤炭发电机组前,德国已经开始根据法律文件关闭相对应的发电机组。2015年到2020年,德国关闭的发电电厂主要由根据《德国能源法案》、《德国核能退出法案》以及安全备用状态煤炭电厂组成,5年共计关闭21749兆瓦。在此期间,德国根据《德国可再生能源法案》大力发展可再生能源,德国能源部门结构性优化效果显著。 B 德国煤炭发电厂走上谢幕之路 煤炭退出委员会的成立 2018年6月6日,德国民主联盟党和社会民主党就德国淘汰全部煤炭发电厂达成初步协议;德国联邦议会批准成立煤炭退出委员会,即产业成长、结构变革与就业委员会。德国煤炭电厂的关闭是德国和欧盟实现“碳中和”目标的重要组成部分。 煤炭退出委员会以德国《2050年气候行动计划》为纲要,其主要任务包括以下几点:为德国制定短期、中期和长期的煤电退出的日期、目标和程序;在德国电厂淘汰过程中促进对应区域内经济可持续增长、解决煤电产业工人就业问题;降低能源部门碳排放总量以实现德国2020年碳排放目标(温室气体排放量较1990年的水平下降40%);实现2030年能源部门减排目标的措施(温室气体排放量较1990年水平下降61%至62%)。 正式立法和实施阶段 在煤炭退出委员会经过2年时间的调查和计划后,2020年8月14日,德国联邦议会通过两项法案,即《德国燃煤电厂淘汰法案》和《矿区结构调整法案》,由此宣告德国煤炭电厂退出程序正式启动。 根据《德国煤炭电厂退出法案》和德国联邦环境、自然保护及核能安全部披露的详细内容,德国煤炭电厂退出路径如下: 一是2020年12月,首批4千兆瓦无烟煤发电机组已经关闭。 二是截至2022年,德国计划将关闭40千兆瓦的煤炭总电力中的10千兆瓦的煤炭发电装置(共计7座电厂),剩余的30千兆瓦煤炭电力装置中无烟煤机组和褐煤机组各占15千兆瓦。此举将为每年的温室气体减排量带来200万到250万吨的贡献量。 三是截至2030年,德国计划关闭13千兆瓦的煤炭发电装置(共计10座电厂),保存8千兆瓦无烟煤电力机组和9千兆瓦褐煤电力机组。此项煤炭电厂退出计划将使得德国能源部门能够在2030年实现温室气体减排目标。 四是2038年,德国煤炭电厂将全部关闭。剩余11座无烟煤电厂计划于2034年全部关闭。根据要求,煤炭电厂退出委员会将分别在2026年、2029年和2032年三次评估是否能够将2030年之后计划关闭的电厂提前3年(2035年)关闭。 五是德国Uniper公司投资建造的Datteln IV发电厂将持有该煤炭发电厂正式运行的有效许可证。煤炭退出委员会暂未与Uniper公司就是否运行和关闭日期的问题达成一致。 针对上述关闭煤炭发电厂,德国联邦政府计划对2030年前关闭的褐煤发电厂补贴435亿欧元;以公开拍卖配额的形式对自愿减少或关闭煤炭发电机进行补贴。截至2022年9月底,德国已经完成4轮拍卖。前四轮拍卖配额量分别为4787.67兆瓦、1514兆瓦、2480.82兆瓦和433.01兆瓦。拍卖价格从5000欧元/兆瓦到16500欧元/兆瓦不等。根据要求,中标的电厂自中标日起拥有6个月的缓冲期,缓冲期结束后对应电厂将停止运营。 从2015年开始,德国部分煤炭发电厂转为安全备用状态并保持4年时间。在此期间,除在可再生能源不能供应充足电力外,相关机组不允许运行发电,而在结束安全备用状态后的电厂则必须永久关闭。2021年10月,德国弗里姆默斯多夫的F号和Q号发电机组完成安全备用状态已经关闭,共计562兆瓦。2018年进入安全备用状态的5台的褐煤发电机组已经转为安全备用状态,共计1816兆瓦,且按计划将分别于2022年10月1日和2023年10月1日关闭。 整体来看,德国联邦政府计划从2021年到2024年关闭12487兆瓦的总发电机组。然而,从计算的预估数额上看上述总量为16120兆瓦。其中,包括《德国燃煤电厂淘汰法案》规定到期关闭的电厂和4轮在公开拍卖中中标的自愿关停电厂,共涉及6182兆瓦,结束安全备用转态的煤电机组共1816兆瓦。 C 德国煤发电正在发挥替代效用 德国天然气供应短缺虽无近忧仍有远虑 在德国逐渐关闭煤炭发电机组的同时,能源安全的保障正在经受严重考验。在俄乌冲突升级之际,德国进口来自俄罗斯天然气的不利局面仍然没有改善(2020年俄罗斯天然气进口量占德国总进口量的37.10%)。德国官方数据显示,来自“北溪一号”和马尔诺站点的天然气进口量仍然为零。 不过,德国天然气供应严重短缺的局面得到明显改善。截至10月21日,德国天然气储存量已经接近库存的96.52%,同时德国天然气现货价格从350欧元/兆瓦时明显回落至60欧元/兆瓦时。上述情况主要得益于以下几个因素: 首先,德国加大从挪威、荷兰和比利时的进口力度。尽管德国天然气进口量从2022年4月的6000兆瓦时/日下降至9月初的2300兆瓦时/日,但是此后开始稳步回升。截至10月21日,德国天然气进口量维持在3200GWh/日的水平,目前进口量只占到“北溪一号”停止运行前的一半左右。 其次,德国大幅降低天然气出口量。德国天然气出口量从2022年5月的2500兆瓦时/日下降至9月初的500兆瓦时/日。 最后,德国大幅减少天然气消费量,自2022年5月以来,德国天然气消费量同比下降幅度保持在11%到22%,预计德国全年天然气消费量同比下降15%—20%。因为德国2022年10月平均气温较2019到2021年同期平均气温高1摄氏度,德国天然气消费量已经明显低于过去4年的平均水平。 德国仍然面临冬季能源供应稳定保障的严重挑战。根据德国政府披露的文件内容,目前德国暂未进入居民部门用气高峰,气温将随着时间的变化而逐渐降低,尽管德国天然气的储存量已经到达“供应安全”的保障库存,欧洲多处天然气供应设施检修已经结束,德国仍将天然气库存量维持在较高水平,天然气供应形势依然非常紧张并且仍然有进一步恶化的趋势。 德国煤炭发电机组提高发电小时数以保障电力供应 根据德国电力供需平衡表的数据,2020年,德国国内电力总消费量456亿千瓦时,其中,工商业非居民用电量达到318.5亿千瓦时,居民部门用电量125.70亿千瓦时,居民部门电力消费占总消费量的27.57%。目前,欧洲已经进入取暖季,根据德国大约1000家供暖供应商的数据,2020年德国通过179万个供暖点提供超过11.2千瓦时的供暖,这相当于每个供暖点的平均供电量为6256千瓦时,较2019年的6336千瓦时下降80千瓦时。 2022年8月29日,德国政府宣布重启Uniper公司所属的Heyden 4号煤炭发电机组,其发电装机量为875兆瓦,德国政府允许其运行至2023年4月1日。然而,根据上文分析的德国电力供应情况,我们认为德国已经不具备大规模重启煤炭发电厂的能力,但淘汰煤电和核电的步伐将会相应减缓。目前,德国处于安全备用状态和可运行的煤炭电厂装机量较小。 在德国煤炭电厂装机量稳定的情况下,德国只有通过提高煤电装置发电小时数以弥补天然气发电损失量。2020年,德国煤炭装机量和发电量分别为44.4吉瓦和123.6太瓦时,折算发电设备平均利用小时数为2783.78小时,同年我国火电设备平均利用小时数为4216小时,所以我们认为德国煤炭发电机组是在考虑碳排放和经济性的情况下非满负荷运行。2022年,德国面临严峻的电力保供危机,煤炭替代效用明显。1—9月无烟煤累计发电量189.5太瓦时,较2021年的137.16太瓦时和2020年的104.29太瓦时分别增长38.16%和81.70%。尽管德国可以通过提高煤炭发电小时数来弥补天然气损失量,但能源价格和电力价格将在四季度的寒潮中面临再度推高的风险,德国通货膨胀居高不下和经济进入衰退阶段都将演变为现实。 D 德国碳排放组成结构较为均衡 从碳排放的结构上来看,以电力和供暖为代表的能源使用部门是德国碳排放的主要来源,但德国碳排放的组成结构较为均衡。根据欧洲环境署(EEA)的数据,2020年,能源部门以2.19亿吨的碳排放量占到德国温室气体排放量的第一名,能源部门碳排放量占总碳排放量的30%,显著低于42%的全球平均水平和33%的欧盟平均水平。 尽管目前德国能源供应面临紧缺状态,但实现“碳中和”的目标和过程仍在继续。 从电力生产的原料来看,2020年德国褐煤发电部门碳排放量934万吨,较2019年降低236万吨,同比下降20.17%;无烟煤发电部门碳排放量331万吨,较2019年降低148万吨,同比下降30.90%;天然气发电部门碳排放量298万吨,较2019年增加35万吨,同比增加13.31%。碳排放的变化趋势符合煤炭电力逐渐淘汰和天然气发电逐步增加的整体趋势。
  • 《国家发改委、能源局发布加强新形势下电力系统稳定工作的指导意见》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2023-10-26
    • 10月25日,国家发展改革委 国家能源局发布《关于加强新形势下电力系统稳定工作的指导意见》。 文件指出,完善合理的电源结构。统筹各类电源规模和布局。大力提升新能源主动支撑能力。推动系统友好型电站建设,有序推动储能与可再生能源协同发展,逐步实现新能源对传统能源的可靠替代;协同推进大型新能源基地、调节支撑资源和外送通道开发建设,推动基地按相关标准要求配置储能,保障外送电力的连续性、稳定性和高效性。 科学安排储能建设。按需科学规划与配置储能。根据电力系统需求,统筹各类调节资源建设,因地制宜推动各类储能科学配置,形成多时间尺度、多应用场景的电力调节与稳定控制能力,改善新能源出力特性、优化负荷曲线,支撑高比例新能源外送。有序建设抽水蓄能。有序推进具备条件的抽水蓄能电站建设,探索常规水电改抽水蓄能和混合式抽水蓄能电站技术应用,新建抽水蓄能机组应具备调相功能。积极推进新型储能建设。充分发挥电化学储能、压缩空气储能、飞轮储能、氢储能、热(冷)储能等各类新型储能的优势,结合应用场景构建储能多元融合发展模式,提升安全保障水平和综合效率。 原文如下: 国家发展改革委 国家能源局关于加强新形势下电力系统稳定工作的指导意见 发改能源〔2023〕1294号 各省、自治区、直辖市、新疆生产建设兵团发展改革委、能源局,天津市工业和信息化局、辽宁省工业和信息化厅、上海市经济和信息化委员会、重庆市经济和信息化委员会、四川省经济和信息化厅、甘肃省工业和信息化厅,北京市城市管理委员会,国家能源局各派出机构,有关电力企业: 为深入贯彻党的二十大精神,全面落实党中央、国务院决策部署,准确把握电力系统技术特性和发展规律,扎实做好新形势下电力系统稳定工作,加快构建清洁低碳、安全充裕、经济高效、供需协同、灵活智能的新型电力系统,保障电力安全可靠供应,推动实现碳达峰碳中和目标,提出以下意见。 一、总体要求 (一)指导思想 以习近平新时代中国特色社会主义思想为指导,深入贯彻党的二十大精神,全面落实碳达峰碳中和战略部署和“四个革命、一个合作”能源安全新战略,深刻认识未来相当长时间内,电力系统仍将维持交流电为主体、直流电为补充的技术形态,稳定问题将长期存在,牢固树立管电就要管系统、管系统就要管稳定的工作理念。立足我国国情,坚持底线思维、问题导向,坚持系统观念、守正创新,坚持先立后破、远近结合,统筹发展和安全,做好新形势下电力系统稳定工作,为中国式现代化建设提供可靠电力保障,满足人民美好生活用电需要。 (二)总体思路 夯实稳定物理基础。科学构建源网荷储结构与布局,保证电源结构合理和电网强度,建设充足的灵活调节和稳定控制资源,确保必要的惯量、短路容量、有功、无功和阻尼支撑,满足电力系统电力电量平衡和安全稳定运行的需求。 强化稳定管理体系。围绕高比例可再生能源、高比例电力电子设备的电力系统在源网荷储互动环境下安全稳定运行,科学谋划电力系统转型的发展方向和路径,统筹规划、建设、运行、市场、科研等各项工作,建立适应新型电力系统的稳定管理体系,确保稳定工作要求在新型电力系统全过程、全环节、全方位落实。 加强科技创新支撑。围绕系统安全稳定技术需求,加强基础理论研究,推进重大技术和装备攻关,加快先进技术示范和推广应用,协同构建适应新型电力系统的稳定技术标准体系,以创新支撑新型电力系统建设。 二、夯实电力系统稳定基础 (三)完善合理的电源结构。统筹各类电源规模和布局。可靠发电能力要满足电力电量平衡需要并留有合理裕度,为系统提供足够的调峰、调频、调压和阻尼支撑;科学确定电源接入电网电压等级,实现对各级电网的有效支撑;构建多元互补的综合能源供应体系。增强常规电源调节支撑能力。新建煤电机组全部实现灵活性制造,现役机组灵活性改造应改尽改,支持退役火电机组转应急备用和调相功能改造,不断提高机组涉网性能;积极推进主要流域水电扩机、流域梯级规划调整等,依法合规开展水电机组改造增容,新建水电机组按需配置调相功能;积极安全有序发展核电,加强核电基地自供电能力建设;在落实气源的前提下适度布局调峰气电;稳步发展生物质发电。大力提升新能源主动支撑能力。推动系统友好型电站建设,有序推动储能与可再生能源协同发展,逐步实现新能源对传统能源的可靠替代;协同推进大型新能源基地、调节支撑资源和外送通道开发建设,推动基地按相关标准要求配置储能,保障外送电力的连续性、稳定性和高效性。 (四)构建坚强柔性电网平台。明确网架构建原则。构建分层分区、结构清晰、安全可控、灵活高效、适应新能源占比逐步提升的电网网架,合理确定同步电网规模;保证电网结构强度,保持必要的灵活性和冗余度,具备与特高压直流、新能源规模相适应的抗扰动能力和灵活送受电能力。提高直流送受端稳定水平。直流送端要合理分群,控制同送端、同受端直流输电规模,新增输电通道要避免过于集中;直流受端要优化落点布局,避免落点过于密集;常规直流受端和新能源高占比地区应具备足够的电压支撑能力,短路比等指标要符合要求;积极推动柔性直流技术应用。促进各级电网协调发展。合理控制短路电流水平,适时推动电网解环;推动建设分布式智能电网,提升配电网就地平衡能力,实现与大电网的兼容互补和友好互动。 (五)科学安排储能建设。按需科学规划与配置储能。根据电力系统需求,统筹各类调节资源建设,因地制宜推动各类储能科学配置,形成多时间尺度、多应用场景的电力调节与稳定控制能力,改善新能源出力特性、优化负荷曲线,支撑高比例新能源外送。有序建设抽水蓄能。有序推进具备条件的抽水蓄能电站建设,探索常规水电改抽水蓄能和混合式抽水蓄能电站技术应用,新建抽水蓄能机组应具备调相功能。积极推进新型储能建设。充分发挥电化学储能、压缩空气储能、飞轮储能、氢储能、热(冷)储能等各类新型储能的优势,结合应用场景构建储能多元融合发展模式,提升安全保障水平和综合效率。 三、加强电力系统全过程稳定管理 (六)加强电力系统规划。统筹整体规划。统筹源网荷储整体规划,强化区域协同,加强规划方案及过渡期安全稳定和供电充裕性的系统论证,提高规划阶段电力系统安全稳定计算分析的深度和精度,加强系统调节能力统筹规划。强化规划执行。严格按规划推动源网荷储协同发展、按时投运,滚动开展供需平衡分析,合理安排支撑性电源和调节性资源建设,满足电网安全稳定运行、电力保供和新能源消纳要求。有序做好衔接。加强规划与建设、运行等环节的有效衔接,提升规划方案的适应性、可行性与安全性;加强一、二次系统衔接,协调开展安全稳定控制系统的整体方案研究。 (七)加强工程前期设计。深化设计方案。在大型输变电工程、大型电源接入系统、直流输电工程的可行性研究及初步设计工作中,加强工程对系统的影响分析。开展差异化补强设计。针对重点区段开展差异化设计,提升工程可靠性和抵御灾害能力。优化二次系统设计。合理配置继电保护、稳定控制、通信、自动化、监控系统网络安全等二次系统,确保满足相关标准和反事故措施要求。 (八)加强电力装备管理。紧密围绕电力系统的稳定技术要求开展相关装备研制、系统试验。针对不同应用场景优化直流、新能源等电力电子装备的并网性能。严格把关电力装备入网质量,充分开展试验测试,消除装备质量系统性缺陷。对新研发的首台(套)电力装备,加强科学论证和风险管控。 (九)加强电力建设管理。强化电力工程建设的安全、环保、质量、进度等全周期管理,实现工程“零缺陷”投运。组织实施与基建工程配套的系统安全稳定控制措施,确保二次设备与相应的一次设备同步建设、同步投运。针对工程建设过渡阶段,开展系统分析校核,落实过渡期安全保障措施。 (十)加强电力设备运维保障。加强大型电源和主网设备的可靠性管理,持续开展设备隐患排查治理和状态监测,针对重要输电通道、枢纽变电站、重要发电厂等关键电力设施开展专项运维保障。及时开展设备缺陷及故障原因分析,制定并落实反事故措施,定期核定设备过负荷能力。加强二次系统运维保障,确保二次设备状态和参数与一次系统匹配,防止继电保护及安全自动装置不正确动作。 (十一)加强调度运行管理。严肃调度纪律。坚持统一调度、分级管理,各并网主体必须服从调度机构统一指挥,调度机构要严格按照相关法律法规和制度标准开展稳定管理工作;统筹安排电力系统运行方式,协同落实互联电力系统安全稳定控制措施;发生严重故障等情况下,调度机构应按照有关规定果断采取控制措施。强化协同控制。建立一、二次能源综合管理体系,加强电力电量全网统一平衡协调;提升新能源预测水平,严格开展各类电源及储能设施涉网性能管理,通过源网荷储和跨省区输电通道送受端电网协同调度,提高面向高比例可再生能源接入的调度管控能力。 (十二)加强电力系统应急管理。建立健全应对极端天气、自然灾害及突发事件等的电力预警和应急响应机制,加强灾害预警预判和各方协调联动。强化重点区域电力安全保障,合理提高核心区域和重要用户的相关线路、变电站建设标准,推进本地应急保障电源建设,重要用户应根据要求配置自备应急电源,加强移动应急电源统筹调配使用,在重点城市建成坚强局部电网。加强超大、特大城市电力保供分析,根据需求保留部分应急备用煤电机组,应对季节性和极端天气保供。提升事故后快速恢复和应急处置能力,优化黑启动电源布局,完善各类专项应急预案,定期组织开展大面积停电事件应急演练。 (十三)加强电力行业网络安全防护。强化安全防护建设。坚持“安全分区、网络专用、横向隔离、纵向认证”原则,强化结构安全、本体安全,探索构建安全子域,推进新型并网主体电力监控系统安全防护能力建设,强化供应链安全管理,深化安全防护评估。提升网络安全态势感知及应急处置能力。完善网络安全态势感知平台建设应用,推进电力网络安全靶场高质量发展,强化备用调度体系,制修订电力监控系统专项网络安全事件应急预案并定期组织演练。 四、构建稳定技术支撑体系 (十四)攻关新型电力系统稳定基础理论。研究高比例可再生能源、高比例电力电子设备接入电力系统、特高压交直流混联运行的稳定机理和运行特征,掌握电力系统故障暂态过渡过程及抑制方法。创新电力系统多维度稳定性控制理论与方法,突破海量异构资源的广域协调控制理论,深入研究新型储能对电力系统安全稳定支撑作用与控制方法。加快攻关源荷高度不确定性环境下的电力电量平衡理论,建立完善各类灵活调节性资源规划设计理论。 (十五)提升系统特性分析能力。推进电力系统多时间尺度分析仿真能力建设。在电力系统各环节深入开展分析,对高比例电力电子设备接入电网开展电磁暂态仿真或机电-电磁混合仿真校核,建立和完善集中式新能源、新型储能、直流等详细分析模型,开展含分布式电源的综合负荷建模,推动新能源发电机组模型与参数开放共享。加强电力系统稳定特性分析。考虑运行工况的多变性和随机性,强化在线安全分析应用,充分利用实际故障和系统性试验开展研究,掌握系统安全特性及稳定边界。 (十六)强化系统运行控制能力。融合先进信息通信技术,汇集一次能源、设备状态、用户侧资源、气象环境等各类信息,构建全网监视、全频段分析、全局优化、协同控制、智能决策、主配一体的调度技术支持系统,提高电力系统运行控制的自适应和数字化水平,实现调度决策从自动化向智能化转变。提升新能源和配电网的可观、可测、可控能力,研究分布式电源、可控负荷的汇聚管理形式,实现海量分散可控资源的精准评估、有效聚合和协同控制,同步加强网络安全管理。建设技术先进、覆盖主配、安全可靠、高速传输的一体化电力通信专网,为运行控制、故障防御提供坚强技术支撑。 (十七)加强系统故障防御能力。巩固和完善电力系统安全防御“三道防线”,开发适应高度电力电子化系统的继电保护装置和紧急控制手段,研究针对宽频振荡等新型稳定问题的防控手段,扩展稳定控制资源池,滚动完善控制策略,加强安全自动装置状态和可用措施量的在线监视,保障电力电子化、配电网有源化环境下稳定控制措施的有效性。研究新能源高占比情形下发生极端天气时的电力系统稳定措施。加强电力系统故障主动防御能力,提升全景全频段状态感知和稳定控制水平,实现风险预测、预判、预警和预控。 (十八)加快重大电工装备研制。研发大容量断路器、大功率高性能电力电子器件、新能源主动支撑、大容量柔性直流输电等提升电力系统稳定水平的电工装备。推动新型储能技术向高安全、高效率、主动支撑方向发展。提高电力工控芯片、基础软件、关键材料和元器件的自主可控水平,强化电力产业链竞争力和抗风险能力。 (十九)加快先进技术示范和推广应用。紧密围绕电力系统稳定核心技术、重大装备、关键材料和元器件等重点攻关方向,充分调动企业、高校及科研院所等各方面力量,因地制宜开展电力系统稳定先进技术和装备示范,积累运行经验和数据,及时推广应用成熟适用技术,加快创新成果转化。 (二十)加强稳定技术标准体系建设。充分发挥现有标准指导作用。建立健全以《电力系统安全稳定导则》《电力系统技术导则》《电网运行准则》为核心的稳定技术标准体系并适时修订完善,强化标准在引领技术发展、规范技术要求等方面的作用。持续完善稳定技术标准体系。完善新能源并网技术标准,提升新能源频率、电压耐受能力和支撑调节能力;建立新型储能、虚拟电厂、分布式智能电网等新型并网主体涉网及运行调度技术标准;完善新型电力系统供需平衡、安全稳定分析与控制保护标准体系,指导新型电力系统广域协同控制体系顶层设计;开展黑启动及系统恢复、网络安全等电力安全标准研制;引领新形势下电力系统稳定相关国际标准制修订。 五、组织实施保障 (二十一)建立长效机制。完善电力行业稳定工作法规制度,强化政策措施的系统性、整体性、协同性。建立健全电力系统稳定工作长效机制,强化规划执行的严肃性,加强统筹协调,一体谋划、一体部署、一体推进重大任务,定期研究解决重点问题与重大运行风险,协调解决保障电力供应和系统稳定运行面临的问题。 (二十二)压实各方责任。建立健全由国家发展改革委、国家能源局组织指导,地方能源主管部门、国家能源局派出机构、发电企业、电网企业、电力用户各负其责、发挥合力的电力系统稳定工作责任体系。地方能源主管部门、经济运行管理部门及有关单位按职责分工履行好电力规划、电力建设、电力保供的属地责任。发电企业加强燃料供应管理,强化涉网安全管理,提高发电设备运行可靠性,满足系统安全稳定运行要求。电网企业做好电网建设运维、调度运行等环节的稳定管理,强化电网安全风险管控。电力用户主动参与需求响应,按要求执行负荷管理,践行节约用电、绿色用电。国家能源局派出机构依法加强监管,推动相关稳定措施落实到位。 (二十三)完善投资回报机制。建立健全基础保障性和系统调节性资源投资回报机制,合理反映其在新型电力系统中的价值。持续完善市场机制,推动各方积极参与负荷控制建设、运营和需求侧响应,按照“谁提供、谁获利”的原则获得合理收益。鼓励社会资本积极参与电力系统稳定调节资源投资、建设和运营。完善电力市场交易安全稳定校核制度,保证各类市场运作场景下电力系统稳定可控。 (二十四)加强宣传引导。开展形式多样的政策宣传和解读,凝聚行业共识,引导各方力量树立全网一盘棋的思想,发挥各自优势形成合力。加强电力系统稳定工作人才培训和队伍建设,提升电力系统管理人员和技术人员工作水平。及时总结电力系统稳定工作经验,推广典型模式和先进技术。 国家发展改革委 国 家 能 源 局 2023年9月21日