《科学家发现RP金属卤化物杂化材料在光电子等领域应用潜力》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-06-17
  • 近日,科学家在相关研究中发现,Ruddlesden-Popper(RP)金属卤化物杂化材料有望成为应用于光电子和热能存储领域的二维(2D)材料。

    Ruddlesden-Popper钙钛矿是一种由无机和有机成分交替构成的层状材料,在发光二极管(LED)、热能存储和太阳能电池板技术等多种应用中展现出成为理想选择的潜力。同时,金属卤化物钙钛矿也被认为是一种极具潜力的光电应用材料,但由于其在室温附近存在多种动态过程,将其集成到器件中面临挑战,且这些材料的结构相变会影响其光学特性。

    在最近的研究中,犹他大学研究人员利用温度相关的吸收和发射光谱以及X射线衍射,对钙钛矿的相变行为展开研究。研究人员强调,相变是物质从一种状态到另一种状态的离散变化,像水和钙钛矿等物质具有多种不同性质的固态。在化学系比斯查克实验室进行的实验,证明了相变与材料发射特性之间存在联系,这引入了一种动态控制或可调性,能为技术应用带来多种益处。

    具体而言,由于钙钛矿同时含有有机和无机成分,有机层会发生相变,进而影响无机层的结构,有机层和无机层的相互作用会彻底改变材料的性质。新研究的资深作者、助理教授Connor Bischak表示:“这些几乎油腻的链状物会结晶在一起。当达到一定温度时,它们会融化并变得更加无序。熔化过程会影响无机成分的结构,从而控制材料发射的光量及其波长。”他还指出,钙钛矿可在分子水平上轻松操控,发射波长能从紫外线调节到近红外。

    研究人员强调,薄如晶片的钙钛矿光学特性会随温度变化而改变。在发表于《Matter》杂志的研究中,研究人员称:“我们还观察到,无机层中细微的八面体畸变会导致带隙随温度而发生连续变化。总而言之,我们的研究结果揭示了相变过程中的结构变化如何影响二维钙钛矿的光电特性。”

    此外,钙钛矿为下一代太阳能电池技术提供了强大优势。长期以来,硅一直是太阳能电池的标准材料,但因其高能耗的制造工艺和持续存在的供应链问题,面临诸多限制。相比之下,钙钛矿是一种可溶液加工的材料。比斯查克补充道:“这意味着你基本上将所有这些前体化学物质溶解在溶剂中,然后就可以制作太阳能电池,就像用墨水打印一样。”

  • 原文来源:https://www.wedoany.com/innovation/18595.html
相关报告
  • 《我国科学家发现新型热导率自主调控材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2021-03-16
    • 中国科学院合肥研究院固体所功能材料物理与器件研究部童鹏研究员课题组与计算物理与量子材料研究部张永胜研究员课题组合作,在六角硫化物中发现了温度驱动的巨大热导率跳变效应,并给出理论解释。该材料体系易于合成、原料环境友好,在热流主动控制领域具有潜在的应用价值。相关研究结果发日前表在期刊《Acta Materialia》上。  目前约90%能源的使用涉及热量的产生与操控。因此有效控制热量传导对于提高能源利用率、实现节能减排和可持续发展均具有重要意义。材料的热导率大小是决定其热传导能力的关键因素之一。然而,如果材料热导率随温度变化而发生突变,则可根据导热能力的不同实现对热流的自主控制。近年来此类材料已得到了研究人员的广泛关注。 研究人员发现六角相硫化物在低温反铁磁至高温顺磁相变处,热导率出现巨大的可逆跳变,变化率最大能超过200%,其远高于已知的典型固态热导率突变材料,如镍钛合金等。为了阐明热导率突变的物理机制,研究人员通过NiS对其电子能带结构计算,结合求解玻尔兹曼输运方程,发现高于相变温度的顺磁态为金属,具有较大的电子热导率。研究人员用少量金属银粘接六角硫化物,通过与基体之间形成的纳米过渡层,金属银对热应力起到了很好的缓冲和释放作用,显著地改善了材料的脆性,同时也提高了材料的机械加工性能和热循环稳定性。 由于六角硫化物体系材料体系易于合成、原料环境友好,因此在热流主动控制领域具有潜在的应用价值。当环境寒冷时,低热导率可以延缓热量散失,起到保温作用;而在炎热的环境下,高热导率有助于热量快速散发,防止器件过热。如可用于维持如电池、芯片的最佳工作温度。该材料也可以与具有相反热导率温度依赖关系的材料联合使用,构筑热二极管。 
  • 《.突破 | 我国科学家发现光阴极“量子”材料》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-03-15
    • 近日,西湖大学理学院何睿华课题组连同研究合作者一起,发现了世界首例具有本征相干性的光阴极量子材料,其性能远超传统的光阴极材料,且无法为现有理论所解释,为光阴极研发、应用与基础理论发展打开了新的天地。 摄影师镜头下,首例具有本征相干性的光阴极量子材料:钛酸锶 普通光阴极材料(a)和光阴极量子材料钛酸锶(b)所发射的初始电子束的区别 相关论文《一种钙钛矿氧化物上的反常强烈相干二次光电子发射》,已提前在线发表于《自然》期刊。西湖大学博士研究生洪彩云、邹文俊和冉鹏旭为论文共同第一作者,西湖大学理学院终身副教授何睿华为通讯作者。 1887年,德国物理学家赫兹在实验中意外发现,紫外线照射到金属表面电极上会产生火花。1905年,爱因斯坦基于光的量子化猜想,提出了对该现象的理论解释。这标志着量子力学大门的正式开启。由此,将“光”转化为“电”的“光电效应”,以及能够产生这个效应的“光阴极”材料,正式进入人类的视野。 “这些光阴极材料基本上都是传统金属和半导体材料,大多数在60年前被发现。它们已成为当代粒子加速器、自由电子激光、超快电镜、高分辨电子谱仪等尖端科技装置的核心元件。”何睿华表示,然而,这些传统材料存在固有的性能缺陷——它们所发射的电子束“相干性”太差,也就是说,电子束的发射角太大,其中的电子运动速度不均一。这样的“初始”电子束要想满足尖端科技应用的要求,必须依赖一系列材料工艺和电气工程技术来增强它的相干性,而这些特殊工艺和辅助技术的引入极大地增加了“电子枪”系统的复杂度,提高了建造要求和成本。 尽管基于光阴极的电子枪技术最近几十年来有了长足的发展,但已渐渐无法跟上相关科技应用发展的步伐。许多前述尖端科技的升级换代呼唤初始电子束相干性在数量级上的提升,而这已经不是一般的光阴极性能优化所能实现的了,只能寄望于在材料和理论层面上的源头创新。 深耕材料物理性质研究的西湖大学理学院何睿华团队,意外在一个同类物理实验室中“常见”的量子材料——钛酸锶上实现了突破。 此前以钛酸锶为首的氧化物量子材料研究,主要是将这些材料当作硅基半导体的潜在替代材料来研究,但何睿华团队却通过一种强大的、但很少被应用于光阴极研究的实验手段:角分辨光电子能谱技术,出乎意料地捕捉到这些熟悉的材料竟然同样承载着触发新奇光电效应的能力——它有着远超于现有光阴极材料的光阴极关键性能:相干性,且无法为现有光电发射理论所解释。 超快电镜专家、论文合作者、西湖大学理学院研究员郑昌喜认为,合作团队的这一发现,其重要性不在于往钛酸锶的神奇性质列表增添了一个新的性质,而在于这个性质本身,它可能重启一个极其重要、被普遍认为已发展成熟的光阴极技术领域,改变许多早已根深蒂固的游戏规则。 记者了解到,接下来,该团队将在理论和应用方面开展对相关材料的进一步研究工作。