《中国科学家发现碳纳米管材料制造电子产品新潜力》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-12-20
  • 在过去的几年里,研究人员提出了几种可以最终替代硅互补金属氧化物半导体(CMOS)器件的材料。一些可能性的选择都是基于碳纳米管(CNT)的电子产品,可以利用多种不同的技术来制造碳纳米管。

    专家预计到2020年底,硅互补金属氧化物半导体(CMOS)的使用将开始迅速下降,但还没有确定一类可以有效维持硅的计算能力的替代材料。

    北京大学和湘潭大学的研究人员最近进行了一项研究,主要研究碳纳米管材料在制造电子产品中的潜力。

    研究结果发表在《自然电子》上,研究人员讨论了随着时间的流逝,纳米管基CMOS场效应晶体管的发展,同时重点介绍了电子制造商当前可主要采用的一些CNT材料。

    彭连茂表示:“ CNT是一种理想的电子材料,可提供其他半导体根本无法利用的解决方案,尤其是缩小到10 nm以下时。在这项工作中,我们证明了基于CNT的电子产品有可能大大超越硅技术(通过实验证明是其十倍的优势),并且可以使用碳纳米管来构建大规模集成电路(IC)。”

    CNT的相关物理参数,例如其结构和电子性质,在电子领域中是众所周知的。为了有效地探索CNT材料的潜在局限性。彭连茂和同事着重研究这些特定参数,分析了各个CNT的性能和质量。

    结果表明,在低于10 nm的技术节点上,CNT晶体管的速度可以比硅晶体管快3倍,能源效率高4倍。

    “我们证明,即使使用非常有限的大学制造设施,也可以制造出许多性能优于硅晶体管的晶体管,这表明芯片行业可以在目前的速度下前进数十年。”

    这项研究结果提供了进一步的证据,表明CNT晶体管是当前硅CMOS器件的可行且理想的替代方案。在分析中,研究人员还强调了迄今为止已开发的中规模集成电路的一些优缺点,以及当前阻碍其大规模实施的挑战。

    开发具有新型3-D芯片结构的集成电路(IC)可以进一步提高CNT材料的性能,使其强度提高数百倍。他们的分析和其他研究小组收集的先前研究结果最终表明,CNT技术有可能在后摩尔时代提供更强大,更节能的芯片技术。

    目前我国可以在单个CNT上制造很少的超强大晶体管,但不能制造非常复杂的IC。另一方面,我们可以使用CNT薄膜在三个维度上构建具有超过10k晶体管的CNT基IC,但性能却非常有限。

    未来需要结合两个研究方向,以构建高性能的大型使用CNT膜的大规模集成电路,其性能超过了硅芯片技术。

相关报告
  • 《科学家用蛋白质纳米线制作出新的“绿色”电子材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-24
    • 微生物学家研究领导者Derek Lovley和聚合物科学家Todd Emrick表示,马萨诸塞大学安姆斯特分校的一个跨学科科学团队已经开发出一类新的电子材料,该材料可能会产生更加“绿色”的生物医学和环境传感方式,使其具有可持续性的未来。 他们说,根据他们的最新新工作表明,有可能将蛋白质纳米线与聚合物材料相结合,从而生产出一种柔韧的电子复合材料,该材料保留了蛋白质纳米线的导电性和独特的传感能力。该工作发表在《Small》杂志中(文章题目为:“Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires”)。 Lovley说,蛋白质纳米线比硅纳米线和碳纳米管具有许多方面的优势,包括它们的生物相容性、稳定性以及具有检测化学物质(各种生物医学或环境中存在的物质)的潜力。然而,这些传感器在应用中需要将蛋白质纳米线安装到适于可穿戴传感装置或其他类型电子装置的柔性基质中。 正如Lovley解释道:“十多年来,我们一直在研究蛋白质纳米线的生物学功能,但直到现在我们才能看到它们在电子器件的实际制造中的应用前景。”博士后研究员孙云璐(现就学于德克萨斯大学奥斯汀分校)发现了将蛋白质纳米线与非导电聚合物混合以产生导电复合材料的适当条件。他的实验结果证明,虽然电线是由蛋白质制成的,但它们非常耐用并且易于加工成新材料。 Lovley补充道:“蛋白质纳米线的另一个优点是真正的“绿色”和可持续,我们可以通过用可再生原料喂养的微生物来大规模生产蛋白质纳米线。传统纳米线材料的制造方式需要消耗大量的能量和也需要添加有害的化学物质。相比之下,蛋白质纳米线比硅线更薄,并且比硅在水中稳定,这对于在生物医学应用中非常重要,例如,可以用来检测汗液中的代谢物。” Emrick说:“这些电子蛋白纳米线与聚合物纤维具有惊人的相似性,我们正试图弄清楚如何最有效地将两者结合起来。” 在他们的验证性研究中,蛋白质纳米线在引入聚合物聚乙烯醇时形成导电网络。该材料可以用极端的条件处理,例如加热或极端的pH值(高酸度),这些条件可能会破坏蛋白质基复合材料,但该材料仍然能够很好地工作。 这些嵌入聚合物中的蛋白质纳米线的电导率随着pH变化而显着变化,Lovley解释道:“这是一些重要的生物医学参数用来诊断一些重大的医疗条件,我们还可以用我们想要的方式对蛋白质纳米线的结构进行修饰,以便广泛检测其他生物医学分子。” 导电蛋白纳米线是30多年前Lovley在波托马克河泥中发现的微生物Geobacter的天然产物。 Geobacter使用蛋白质纳米线与其他微生物或矿物质建立电连接。他指出:“在我们的团队中像Todd Emrick和Thomas Russell这样的材料科学专家应该将蛋白质纳米线带入材料领域,而不仅仅让该材料永远停留在泥浆中。” Lovley说:“在这项由UMass Amherst校园基金支持的探索性研究工作中,微生物学团队的后续工作包括扩大纳米线和聚合物基质的生产。” 他指出:“材料科学家需要比我们需要纳米线数量更多的纳米线,我们正在为我们的生物学研究中需要很少纳米线数量时,他们则需要满桶,因此我们现在专注于纳米线产量和定制的纳米线,以便他们对其他分子的反应做出研究成果。”研究人员还申请了一项关于用蛋白质纳米线制成的导电聚合物的专利。”
  • 《碳纳米管:个性十足的神奇材料》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-07-27
    •   近日,中国科学技术大学化学与材料学院杜平武教授课题组,首次利用纳米管稠环封端“帽子”模板,构建出纵向切割的纳米管弯曲片段。这种通过三个弯曲型分子连接两个石墨烯单元的方法,可直接得到纳米笼状结构,为构建封端锯齿型碳纳米管提供了新思路。相关研究成果发表在最新一期《德国应用化学》上。   无独有偶。几乎在同时,以研制出世界上第一颗原子弹而闻名于世的洛斯阿拉莫斯实验室的研究人员,使用功能化碳纳米管生产出首个能在室温下使用通信波长发射单光子的碳纳米管材料。神奇材料碳纳米管,为何如此受各国科学家追捧?   空间结构像“挖空的足球”   1985年,“足球”结构的C60一经发现即吸引了全世界的目光。将“足球”挖空,保持表面的五角和六角网格结构,再沿着一个方向扩展六角网格,并赋予平面网格以碳—碳原子和共价键,就形成了具有中空圆柱状结构的碳纳米管。   碳纳米管是一种具有特殊结构的一维量子材料。其主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管,层与层之间保持固定的距离,约0.34纳米,直径一般为2—20纳米。   “可以将碳纳米管联想为头发丝,而实际上它的直径只有头发丝的几万分之一,即几万根碳纳米管并排起来才与一根头发丝相当。”杜平武教授告诉科技日报记者,作为典型的一维纳米结构,单层碳原子和多层碳原子网格卷曲而成的单壁与多壁碳纳米管,直径通常为0.8—2纳米和5—20纳米,目前报道的最细碳纳米管直径可小至0.4纳米。   杜平武告诉记者,碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管和多壁碳纳米管。若依其结构特征,碳纳米管则可分为扶手椅形纳米管和锯齿形纳米管等几种类型。   制备方法是挑战   “通常的碳纳米管制备方法主要有电弧放电法、激光烧蚀法、化学气相沉积法、固相热解法、辉光放电法、气体燃烧法以及聚合反应合成法等。”杜平武告诉记者,电弧放电法是生产碳纳米管的主要方法。1991年日本物理学家饭岛澄男就是从电弧放电法生产的碳纤维中首次发现的碳纳米管。“这种方法比较简单,但很难得到纯度较高的碳纳米管,并且得到的往往都是多层碳纳米管,而实际研究中人们往往需要的是单层碳纳米管。”   “随后科研人员又发展出了化学气相沉积法,在一定程度上克服了电弧放电法的缺陷,得到的碳纳米管纯度比较高,但管径不整齐,形状不规则。”杜平武说,后续逐步发展起来的固相热解法等,均受限于环境和条件。   “碳纳米管的制备过程与有机合成反应类似,其副反应复杂多样,很难保证同一炉碳纳米管均为扶手椅形纳米管或锯齿形纳米管。”杜平武说,在强酸、超声波作用下,碳纳米管可以先断裂为几段,再在一定纳米尺度催化剂颗粒作用下增殖延伸,而延伸后所得的碳纳米管与模板的卷曲方式相同。   “如果通过类似于DNA扩增的方式对碳纳米管进行增殖,那么只需找到少量的扶手椅形纳米管或锯齿形纳米管,便可在短时间内复制、扩增出数量几百万倍于模板数量的、同类型的碳纳米管。”杜平武说,这可能会成为制备高纯度碳纳米管的新方式。   性能及尺寸超越硅基材料   “碳纳米管具有完美的一维管式结构,碳原子以碳—碳共价键结合,形成自然界中最强的化学键之一,因此轴向具有很高的强度和韧性。此外六角平面蜂窝结构围成的管壁侧面没有悬挂键,所以碳纳米管具有稳定的化学特性。”杜平武说,碳纳米管优异的性能表现在电学、热学和光学等方面,具有超越传统的导电、导热特性等等。   2013年,斯坦福大学科学家制备了由平行排列的单壁碳纳米管为主要元器件的世界上最小“计算机”。近两年,碳纳米管电子器件的性能及尺寸又一次次被突破,势在超越并最终取代目前商用的硅基器件。   碳纳米管还可以制成透明导电的薄膜,用作触摸屏的替代材料。且原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制。碳纳米管触摸屏具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以做成曲面,已在可穿戴装置、智能家具等领域得到应用。   碳纳米管还给物理学家提供了研究毛细现象的最细毛细管,给化学家提供了进行纳米化学反应的最细试管,科学家甚至研制出能称量单个原子的“纳米秤”。“我国在碳纳米管材料的基础研究方面处于领先地位,结构均一性的控制方法和理论不断创新,控制指标也逐年刷新。”杜平武说。