当前,高效的钙钛矿太阳电池广泛采用的空穴传输材料为spiro-OMeTAD和PTAA,但上述空穴材料玻璃化温度较低,使得电池的稳定性受到影响。因此开发新型空穴传输材料,使电池高效率和长期稳定性同时得到保障是该电池研究的前沿热点。由韩国化学技术研究所(KRICT)Jangwon Seo教授课题组牵头的联合研究团队设计制备了一种以芴官能团为链端的新型空穴传输材料DM,其具备了比传统空穴材料更加匹配钙钛矿的能级和热稳定性,使得基于该空穴的单结电池光电转换效率提高到23.2%,且具备了良好的热稳定性。
研究人员利用分子工程对spiro-OMeTAD空穴的分子结构进行调整改性,即用芴官能团替代原有的苯甲醚官能团制备了DM空穴,从而实现对空穴分子结构和物理化学特性的调控。差示扫描量热(DSC)和热重(TGA)测试显示,DM空穴玻璃化温度为161℃,较spiro-OMeTAD大幅提升近40℃,意味着材料的热稳定性得到了显著改善。紫外可见光谱测试结果显示,spiro-OMeTAD空穴的已占有电子的能级最高的轨道HOMO为-5.22 eV,而DM的HOMO更负为-5.27 eV,有助于进一步提升电池开路电压。随后研究人员将分别制备了以DM和spiro-OMeTAD为空穴的钙钛矿电池进行对比研究,在一个标准太阳光照射下(受照面积为0.09 cm2), 采用spiro-OMeTAD空穴性能最优的电池参数分别为短路电流密度24.8 mA cm−2、开路电压1.07 V、填充因子80.5%,转换效率21.3%;而采用DM空穴电池,得益于开路电压和填充因子的提升(1.07 V提高到1.14 V,80.5%提高到81.3%),电池获得了高达23.2%转换效率。基于DM电池的平均稳态效率22.85%,认证稳态效率22.6%。研究人员进一步制备了大面积(1cm2)的钙钛矿电池器件,获得了21.7%的平均稳态效率,认证的效率达到20.9%,是迄今报道的1cm2钙钛矿电池效率最高值。最后对电池开展热稳定性测试,结果显示在60℃热环境下放置50小时后,采用spiro-OMeTAD空穴电池性能出现大幅衰退;相反,基于DM空穴电池经过同样的500小时热环境处置后依然可以保持初始效率的95%,展现出优异的热稳定性。
该项研究利用分子工程创新性的设计制备了高性能、高热稳定性的空穴材料,提升了电池开路电压和热稳定性,将单结钙钛矿电池转换效率提升到新的高度,为设计开发高效稳定钙钛矿电池开辟了新思路。相关研究成果发表在《Nature Energy》。