《我所“裁剪”出新型钙钛矿太阳电池空穴传输材料》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-10-17
  •         近日,我所郭鑫研究员和李灿院士团队,在钙钛矿太阳电池空穴传输材料的开发方面取得新进展,相关研究成果发表在《德国应用化学》(Angew. Chem. Int. Ed.)上,并被选为VIP(Very Important Paper)论文。

      有机-无机杂化钙钛矿太阳电池因其较高的光电转换效率受到广泛关注,其中空穴传输材料(HTM)在提升器件效率方面发挥着重要作用。目前应用最为广泛的HTM是Sprio-OMeTAD,但该分子的对称性较高,易于结晶而导致其薄膜稳定性差且存在针孔缺陷,这不仅降低了器件的稳定性,还不适用于大面积器件的制备,极大限制了其在钙钛矿太阳电池中的应用。

            为解决Sprio-OMeTAD的上述问题,在前期工作的基础上(Nano Energy, Small, Solar RRL),该团队基于“降低分子对称性,提高薄膜形态稳定性”的思想,从原来Sprio-OMeTAD的内核“裁剪”出低对称的新螺环核——螺茚,外围结合咔唑类树枝单元,成功合成了新型空穴传输分子Spiro-I。相比于准球形的Sprio-OMeTAD,该新分子呈现V型结构和更低的分子对称性,因此分子的结晶倾向被有效抑制,同时更容易形成无针孔的高质量薄膜。将Spiro-I作为HTM制备钙钛矿太阳电池,在大面积器件和器件稳定性方面的表现均优于经典材料Sprio-OMeTAD。此外,该分子合成成本更低,器件加工过程中使用量少,有利于降低电池的整体成本。这一工作为制备高效、稳定、低成本的钙钛矿太阳电池提供了新的空穴传输材料,也为空穴传输材料的分子设计提供了新思路,将有助于推动钙钛矿太阳电池的进一步发展。

      另外,该团队一直致力于新型光伏器件载流子传输层及其界面修饰的研究工作,除了此次开发的钙钛矿太阳电池空穴传输材料,他们还报道过多种有机太阳电池的电子和空穴传输材料,并取得了优异的器件性能(J. Mater. Chem. A, J. Mater. Chem. A, Org. Electron., J. Mater. Chem. A, ACS Appl. Mater. Interfaces)。这些工作有助于我所在具有自主知识产权的新型光伏技术所需关键材料体系方面的进一步发展。

      上述研究工作得到国家自然科学基金、两所融合基金、以及博士后基金等项目的资助。

相关报告
  • 《芴端空穴材料助力单结钙钛矿电池效率达到23.2%》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2018-10-09
    • 当前,高效的钙钛矿太阳电池广泛采用的空穴传输材料为spiro-OMeTAD和PTAA,但上述空穴材料玻璃化温度较低,使得电池的稳定性受到影响。因此开发新型空穴传输材料,使电池高效率和长期稳定性同时得到保障是该电池研究的前沿热点。由韩国化学技术研究所(KRICT)Jangwon Seo教授课题组牵头的联合研究团队设计制备了一种以芴官能团为链端的新型空穴传输材料DM,其具备了比传统空穴材料更加匹配钙钛矿的能级和热稳定性,使得基于该空穴的单结电池光电转换效率提高到23.2%,且具备了良好的热稳定性。 研究人员利用分子工程对spiro-OMeTAD空穴的分子结构进行调整改性,即用芴官能团替代原有的苯甲醚官能团制备了DM空穴,从而实现对空穴分子结构和物理化学特性的调控。差示扫描量热(DSC)和热重(TGA)测试显示,DM空穴玻璃化温度为161℃,较spiro-OMeTAD大幅提升近40℃,意味着材料的热稳定性得到了显著改善。紫外可见光谱测试结果显示,spiro-OMeTAD空穴的已占有电子的能级最高的轨道HOMO为-5.22 eV,而DM的HOMO更负为-5.27 eV,有助于进一步提升电池开路电压。随后研究人员将分别制备了以DM和spiro-OMeTAD为空穴的钙钛矿电池进行对比研究,在一个标准太阳光照射下(受照面积为0.09 cm2), 采用spiro-OMeTAD空穴性能最优的电池参数分别为短路电流密度24.8 mA cm−2、开路电压1.07 V、填充因子80.5%,转换效率21.3%;而采用DM空穴电池,得益于开路电压和填充因子的提升(1.07 V提高到1.14 V,80.5%提高到81.3%),电池获得了高达23.2%转换效率。基于DM电池的平均稳态效率22.85%,认证稳态效率22.6%。研究人员进一步制备了大面积(1cm2)的钙钛矿电池器件,获得了21.7%的平均稳态效率,认证的效率达到20.9%,是迄今报道的1cm2钙钛矿电池效率最高值。最后对电池开展热稳定性测试,结果显示在60℃热环境下放置50小时后,采用spiro-OMeTAD空穴电池性能出现大幅衰退;相反,基于DM空穴电池经过同样的500小时热环境处置后依然可以保持初始效率的95%,展现出优异的热稳定性。 该项研究利用分子工程创新性的设计制备了高性能、高热稳定性的空穴材料,提升了电池开路电压和热稳定性,将单结钙钛矿电池转换效率提升到新的高度,为设计开发高效稳定钙钛矿电池开辟了新思路。相关研究成果发表在《Nature Energy》。
  • 《无空穴碳电极全无机钙钛矿太阳电池实现低成本高效运行》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-15
    • 钙钛矿太阳电池短短数年时间转换效率已经突破22%,被认为是最有希望替代晶硅电池的新一代薄膜电池技术。然而,稳定性(传统钙钛矿含有易挥发、不稳定的有机阳极离子)和成本(目前的器件广泛采用价格昂贵的空穴和贵金属电极)问题成为了该电池技术走向商业化应用的一大障碍。日本冲绳科学技术研究所的Yabing Qi教授带领的研究团队,设计制备了锰元素部分替代铅的新型双卤素双金属离子的全无机钙钛矿吸光层,并用碳电极替代传统的spiro-OMeTAD空穴和金电极,不仅增强了电池转换效率,还显著改善了器件稳定性和成本,为钙钛矿电池商业化奠定了关键技术基础。研究人员用碘化锰(MnI2)替代部分的全无机钙钛矿铯铅碘溴(CsPbIBr2¬)溶液中的溴化铅,以将Mn2+离子掺杂到无机钙钛矿CsPbIBr2¬材料中,以期改变钙钛矿光电结构,从而实现对其能隙调控。二次离子质谱表征显示,Mn2+离子成功地替代了部分的Pb2+插入到CsPbIBr2晶格中,即成功制备了Mn2+离子掺杂的无机钙钛矿CsPb1?xMnxI1?2xBr2?2x(x为掺杂的Mn2+离子浓度)。此外,相比Pb2+离子,Mn2+离子半径更小,这会使得BX6八面体(B = Pb或Mn; X = I或Br)体积收缩,有助于提升钙钛矿晶体的稳定性。通过调整掺杂浓度,研究人员实现了对钙钛矿带隙的调控,紫外可见光谱和超紫外光电子谱表征显示,当x=0.005时,无机钙钛矿带隙宽度(CsPbIBr2带隙为1.89 eV)缩减到1.75 eV(带隙变窄能够吸收利用更多的太阳光能量),而扫描电镜和X射线衍射测试显示此时钙钛矿的成膜效果和结晶度也得到了提高,有利于载流子传输。随后研究人员将制备的两种全无机钙钛矿CsPbIBr2和CsPb0.995Mn0.005I1.01Br1.99作为吸光层,同时采用廉价的碳电极替代昂贵的spiro-OMeTAD空穴和金电极,来组装电池器件。光电性能表征结果显示,基于Mn2+离子掺杂的全无机钙钛矿太阳电池转换效率较无掺杂的器件大幅提升近20%,即从6.14%增大到7.36%。更为关键的是Mn2+离子掺杂还显著增强了电池稳定性,老化测试结果显示Mn2+离子掺杂的全无机钙钛矿太阳电池在空气环境中连续辐照运行300小时后,其效率仅衰减8%;而无掺杂的器件仅进行了144个小时的连续辐照测试后,转换效率便大幅下降20%。该项研究通过离子掺杂工程,实现了对无机钙钛矿晶体带隙和晶体结构优化,大幅改善了无机钙钛矿光吸收特性和结构稳定性,从而增强电池器件的性能,同时用廉价的碳电极取代传统钙钛矿电池中的昂贵的空穴传输层和金电极,大幅降低了制造成本,为制备高效稳定的钙钛矿电池提供了新途径。相关研究成果发表在《Advanced Energy Materials》 。