《苏州纳米所周小春团队合作 ACS Nano:基于纳米Nafion阵列的低Pt、高性能燃料电池》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-31
  •  有序Nafion阵列因其在降低催化剂载量,提高燃料电池性能方面的巨大潜力而引起了大家的广泛研究兴趣。目前,有序Nafion阵列的尺寸已经从最初的微米级减小到现在的亚微米级,纳米尺寸的有序Nafion阵列成为其发展的必然趋势。这主要是因为有序Nafion阵列尺寸的减小能够带来三个方面的提升:高的阵列密度提供更多的质子传递通道,高的比表面积提高催化剂的利用率,催化层与扩散层更多的接触位点减小界面传递阻力。但是,纳米尺寸有序Nafion阵列较低的机械强度给其制备以及应用都带来了极大的困难(图 1)。

    近日,中国科学院苏州纳米所周小春研究员、崔义研究员,大连理工大学宋玉江教授等在ACS Nano上发表了高比表面积,纳米尺寸有序Nafion阵列提高燃料电池性能,降低Pt催化剂载量的研究。相较于已经报道的制备方法,该工作创新的通过Nafion乳液溶剂,Nafion阵列热退火温度,以及Nafion阵列剥离方式三个方面的研究实现了纳米尺寸有序Nafion阵列的制备(图2)。首先,使用DMSO作为Nafion乳液溶剂,并在140℃ 下进行热退火处理显著提高了纳米尺寸有序Nafion阵列的机械强度,其机械强度高达17.5 MPa,并高于商业Nafion 212的11.9 MPa。 进一步,边缘刻蚀的方式避免了纳米尺寸有序Nafion阵列剥离过程中大量氢气的产生与聚集,以及较高氢气压力对于Nafion阵列的破坏,Nafion膜的穿孔。最终成功制备了高机械强度,形貌完好的纳米尺寸有序Nafion阵列(图 3)。

      成功制备的纳米尺寸有序Nafion阵列的直径仅为40 nm(D40),密度高达2.7×1010柱/cm2,远高于文献中已经报道的Nafion阵列的密度。高密度的Nafion阵列提供了丰富的质子传递通道,有利于催化层内质子传递阻力的降低。其次,比表面积高达51.5 cm2/cm2,为催化剂的负载提供了较大的比表面积,有利于催化剂利用率的提高(图4)。进一步,纳米尺寸有序Nafion阵列的尺寸优势在燃料电池上得到了很好的证明。如图 5所示,有序Nafion阵列作为阳极一侧时,相较于尺寸更大的D400(400 nm), D100(100nm),D40峰值功率密度最高,高达1.47 W/cm2。与此同时,催化剂载量仅为17.6 μgPt/cm2。此外,D40用于阴极一侧,在61.0 μgPt /cm2的载量下,峰值功率密度可以达到1.29 W/cm2。与已经报道的文献相比,纳米尺寸有序Nafion阵列无论应用与阳极一侧还是阴极一侧,均能够在较低的催化剂载量下获得较高的峰值功率密度。此外,该工作还为电解水和电合成催化层的合理设计提供了科学的指导。

      相关论文以Nanosized Proton Conductor Array with High Specific Surface Area Improves Fuel Cell Performance at Low Pt Loading为题发表在ACS Nano上,中国科学院苏州纳米所博士后宁凡迪、大连理工大学博士研究生秦嘉琪为论文的共同第一作者。中国科学院苏州纳米所崔义研究员、大连理工大学宋玉江教授和中国科学院苏州纳米所周小春研究员为通讯作者。该工作得到了国家重点研发计划、中国博士后基金、苏州市碳达峰碳中和科技支撑重点专项等项目资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202305/t20230530_6765240.html;https://pubs.acs.org/doi/10.1021/acsnano.3c01690
相关报告
  • 《苏州纳米所蔺洪振团队等AFM:高体积能量密度铝硫电池的构筑、设计与展望》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-07-20
    • 铝硫(Al-S)电池由于其高体积能量密度、高安全性、低成本以及Al和S元素的高丰度而被认为是可以满足日益增长储能需求的替代品。然而,铝硫电池仍存在许多挑战,如多硫化物转化动力学缓慢、电解液兼容性差和潜在的铝腐蚀和枝晶形成等问题。当前大多数研究都集中在设计或开发合适的基体材料或优化兼容的电解质上,以寻求高性能的Al-S体系,包括:i) 设计高导电性的基体来提高电极电导率;ii) 开发杂原子掺杂的多孔结构,以物理/化学方式锚定易溶于电解液的多硫化铝;iii) 引入适当的电解液成分与硫正极和铝负极高度兼容,以获得高反应动力学和较低的极化。然而,目前对Al-S电池的研究现状及进一步发展仍然缺乏系统而深入的总结和分析。基于对铝硫电化学的系统理解,结合团队前期在SEI层调控Li传输以抑制枝晶的形成及引入活性催化剂/活化剂改变界面位点活性,降低锂扩散与反应势垒等研究基础 (Adv. Funct. Mater. 2022, 31, 2110468; ACS Nano 2022, 16, 17729; Energy Storage Mater. 2022, 52, 210;Chem. Eng. J. 2022, 446, 137291; Adv. Funct. Mater. 2021, 31, 2007434; Adv. Sci. 2022, 2202244; Nano Lett. 2022, 22, 8008; Nano Lett. 2021, 21, 3245;Energy. Environ. Mater. 2022, 5,731; Chem. Eng. J. 2022, 429, 132352; Energy Storage Mater. 2019, 18, 246; Energy Storage Mater. 2020, 28, 375; J. Mater. Chem. A 2020, 8, 22240; Chem. Eng. J. 2020, 417, 128172),撰写了全面实现高体积能量密度铝-硫二次电池策略的综述文章。   基于对铝硫电池目前的研究进展缺乏系统认知的现状,中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员与德国亥姆赫兹电化学研究所王健博士(现为洪堡学者)联合西安理工大学游才印团队张静博士,全面综述了抑制多硫化物的穿梭以及平滑的铝负极溶解/沉积的具体策略。重点阐述了硫正极从吸附到促进多硫化物转化动力学的催化剂调控的发展;电解质从简单的组分调控到降低离子传输势垒的演变;铝负极保护结合离子传输调控策略实现无枝晶铝负极,更清晰地解读了Al-S电池可能的电化学反应机制及该体系中高活性催化剂潜在的工作机制。最后,进一步展望了实现高性能Al-S电池的方法及大规模储能应用面临的机遇和挑战,对发展高能量密度快速充放Al-S电池体系具有重要的启示作用。   铝硫电池电化学反应原理及目前存在的主要问题。从铝硫电池电化学反应原理出发,总结出不能实现高性能的主要原因为:多硫化铝转化动力学缓慢、电解液兼容性差和离子传输较慢、潜在的铝腐蚀和枝晶的形成等,严重阻碍了快速充放电Al-S电池的发展(图1)。   系统总结和分析促进高效硫转化和抑制多硫化物穿梭的吸附催化策略。随着对高能量密度要求的不断提高,高含硫正极是实现高面容量和高体积能量密度的必要条件。而传统的载体设计与极性位点的植入可以加强基体多硫化物的吸附。随着高含硫正极的吸附位点趋于饱和,常见的吸附策略抑制穿梭效应的能力有限。进一步提出的“吸附-催化”组合策略,充分利用各自的优势,通过提高转化动力学来缓解多硫化物的累积,增强对穿梭效应的抑制效果。重点介绍了金属基催化剂有效提升多硫化物相互转化动力学的机制,对提高硫利用率和降低电池极化的促进作用(图2)。   利用低成本水系电解液和高可逆性离子液体实现高可逆的Al-S电池体系。将可充电铝基电池推向更高容量水平的不可或缺的部分是兼容电解液的选择。事实上,可充电铝硫电池还处于尝试阶段。早期的无机熔盐体系电解质对温度的依耐性强且粘度非常高。低粘度电解液中离子的高输运更有利于实现高性能铝硫电池。近年来发展起来的水系电解液具有较快的离子传输和低粘度,但该电池体系下存在铝表面氧化/钝化层形成、析氢副反应等问题。而室温离子液体作为Al-S电池的电解液,有助于铝离子的快速溶剂化/脱溶,具有高离子电导率。基于此,重点综述了高可逆性的室温离子液体电解液从简单的组分调控到降低离子传输势垒的发展过程,以及离子液体促进实现高离子传输动力学的机制(图3和图4)。   结合表面修饰层防止铝腐蚀与铝离子传输动力学调控策略发展无枝晶铝负极。在Al-S电化学中,负极Al沉积是从Al离子脱溶到铝原子成核和扩散的逐步铝沉积的过程。从溶剂化结构中释放自由Al3+的脱溶速率及后续铝原子在铝表面的扩散速率,是形成均匀离子通量的决定因素。因此,和锂金属负极的锂沉积原理类似,为了获得Al离子/原子动力学,必须克服高的脱溶、成核和扩散势垒,以形成均匀和横向铝沉积。当前,通过Al合金化的方式实现了锂传输动力学的调控,促进了无枝晶铝沉积。未来有望通过催化策略调控沉积动力学实现无枝晶的长寿命铝基电池(图5)。   以上研究成果以Strategies for Realizing Rechargeable High Volumetric Energy Density Conversion-Based Aluminum Sulfur Batteries为题,发表在Advanced Functional Materials期刊中。论文第一作者为西安理工大学张静博士,通讯作者为西安理工大学游才印教授、中国科学院苏州纳米技术与纳米仿生研究所蔺洪振研究员与德国亥姆赫兹电化学研究所王健博士。以上联合工作受到了江苏省自然科学基金、国家重点研发计划、国家自然科学基金及德国Alexander von Humboldt Foundation(洪堡基金)等基金项目支持。
  • 《苏州纳米所周小春团队Adv. Mater.:通过微孔层设计在燃料电池的可回收性和可持续性方面取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-04-28
    •  燃料电池是一种直接将燃料的化学能转化为电能的装置,具有环境污染小、发电效率高等优势。以氢为燃料的燃料电池无碳排放,对从源头上控碳、减碳有着重要作用。近年来,燃料电池的产业化进程得到了飞速发展。然而,关于废弃燃料电池回收的研究处于较为匮乏的阶段。为完全回收燃料电池中的贵金属催化剂和离聚物,膜电极需要经过破碎并使用溶液将相应的材料分离。在该过程中,气体扩散层会参与到膜电极的回收中,一方面使得在电池中老化速度慢的气体扩散层不能重复使用,另一方面也会在回收贵金属和离聚物过程中产生大量的各类消耗,如溶剂等。   针对上述问题,中国科学院苏州纳米所周小春团队制备了一种由碳纳米管互穿网络构成的独立式微孔层。与传统的微孔层相比,这种独立式微孔层直接成型,而不需要涂敷在气体扩散层的大孔基底(一般为碳纸)上。互穿网络结构为这种独立式微孔层提供了高强度、高透气性、高导电性和高平整度等优异的物理性质,因此该独立式微孔层表现出了优异的电池性能(峰值功率达1.35 W cm-2)并能大幅促进燃料电池的可持续性。首先,该微孔层不仅适用于碳纸基底,也能够适用于各种碳基和金属基的多孔材料(峰值功率基本高于1 W cm-2),为高可回收型基底层提供了可靠的微孔层制备方案。其次,该微孔层大幅降低了催化层和气体扩散层以及微孔层和基底层的结合,使得燃料电池的气体扩散层能够在膜电极寿命到期后重复利用,将气体扩散层的寿命延长至138倍(峰值功率衰减8.2%)。最后,使用该独立式微孔层组装的膜电极在回收过程中,气体扩散层(除阴极微孔层)不需要参与到贵金属催化剂和离聚物的回收中,因此回收中的各种消耗得到了大幅减少(大于90%)。 相关工作以A Recyclable Standalone Microporous Layer with Interpenetrating Network for Sustainable Fuel Cells为题发表在国际知名期刊Advanced Materials上,中国科学院苏州纳米所博士生文青林为论文的第一作者。中国科学院苏州纳米所周小春研究员为通讯作者。该工作得到了国家重点研发计划和苏州市碳达峰碳中和科技支撑重点专项等项目资助。