《苏州纳米所周小春团队合作 ACS Nano:基于纳米Nafion阵列的低Pt、高性能燃料电池》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-31
  •  有序Nafion阵列因其在降低催化剂载量,提高燃料电池性能方面的巨大潜力而引起了大家的广泛研究兴趣。目前,有序Nafion阵列的尺寸已经从最初的微米级减小到现在的亚微米级,纳米尺寸的有序Nafion阵列成为其发展的必然趋势。这主要是因为有序Nafion阵列尺寸的减小能够带来三个方面的提升:高的阵列密度提供更多的质子传递通道,高的比表面积提高催化剂的利用率,催化层与扩散层更多的接触位点减小界面传递阻力。但是,纳米尺寸有序Nafion阵列较低的机械强度给其制备以及应用都带来了极大的困难(图 1)。

    近日,中国科学院苏州纳米所周小春研究员、崔义研究员,大连理工大学宋玉江教授等在ACS Nano上发表了高比表面积,纳米尺寸有序Nafion阵列提高燃料电池性能,降低Pt催化剂载量的研究。相较于已经报道的制备方法,该工作创新的通过Nafion乳液溶剂,Nafion阵列热退火温度,以及Nafion阵列剥离方式三个方面的研究实现了纳米尺寸有序Nafion阵列的制备(图2)。首先,使用DMSO作为Nafion乳液溶剂,并在140℃ 下进行热退火处理显著提高了纳米尺寸有序Nafion阵列的机械强度,其机械强度高达17.5 MPa,并高于商业Nafion 212的11.9 MPa。 进一步,边缘刻蚀的方式避免了纳米尺寸有序Nafion阵列剥离过程中大量氢气的产生与聚集,以及较高氢气压力对于Nafion阵列的破坏,Nafion膜的穿孔。最终成功制备了高机械强度,形貌完好的纳米尺寸有序Nafion阵列(图 3)。

      成功制备的纳米尺寸有序Nafion阵列的直径仅为40 nm(D40),密度高达2.7×1010柱/cm2,远高于文献中已经报道的Nafion阵列的密度。高密度的Nafion阵列提供了丰富的质子传递通道,有利于催化层内质子传递阻力的降低。其次,比表面积高达51.5 cm2/cm2,为催化剂的负载提供了较大的比表面积,有利于催化剂利用率的提高(图4)。进一步,纳米尺寸有序Nafion阵列的尺寸优势在燃料电池上得到了很好的证明。如图 5所示,有序Nafion阵列作为阳极一侧时,相较于尺寸更大的D400(400 nm), D100(100nm),D40峰值功率密度最高,高达1.47 W/cm2。与此同时,催化剂载量仅为17.6 μgPt/cm2。此外,D40用于阴极一侧,在61.0 μgPt /cm2的载量下,峰值功率密度可以达到1.29 W/cm2。与已经报道的文献相比,纳米尺寸有序Nafion阵列无论应用与阳极一侧还是阴极一侧,均能够在较低的催化剂载量下获得较高的峰值功率密度。此外,该工作还为电解水和电合成催化层的合理设计提供了科学的指导。

      相关论文以Nanosized Proton Conductor Array with High Specific Surface Area Improves Fuel Cell Performance at Low Pt Loading为题发表在ACS Nano上,中国科学院苏州纳米所博士后宁凡迪、大连理工大学博士研究生秦嘉琪为论文的共同第一作者。中国科学院苏州纳米所崔义研究员、大连理工大学宋玉江教授和中国科学院苏州纳米所周小春研究员为通讯作者。该工作得到了国家重点研发计划、中国博士后基金、苏州市碳达峰碳中和科技支撑重点专项等项目资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202305/t20230530_6765240.html;https://pubs.acs.org/doi/10.1021/acsnano.3c01690
相关报告
  • 《苏州纳米所制备出自呼吸式直接甲醇燃料电池》

    • 来源专题:能源情报网信息监测服务平台
    • 编译者:guokm
    • 发布时间:2022-03-03
    • 近年来,便携式可穿戴电子设备迅速发展,但其能源供应存在安全事故发生的可能性,如穿戴电源被压缩、弯曲、切割、发生泄漏、着火等。因此,开发能够安全使用的能源供应系统非常重要。然而,关于燃料电池安全性研究的报道较少。对于燃料电池来说,机械过载引起的燃料泄漏或造成灾难性的影响。能否制造出一种高度耐用的燃料电池,且可以通过如针刺、压缩、弯曲,甚至切割等安全测试?此外,在安全试验中,能够有效地抑制燃料泄漏、热失控、火灾、爆炸等灾难性影响。 中国科学院苏州纳米技术与纳米仿生研究所研究员周小春团队在柔性燃料电池的关键材料和技术方面取得系列进展:柔性有序高导电电极开发【ACS Nano, 2017, 11(6), 5982-5991】、便携式柔性制氢研究【Journal of the American Chemical Society, 2017, 139(40), 14277-14284,Chemical Science, 2017, 8, 7498-7504,ACS Applied Materials & Interfaces, 2020, 12(4), 4473-4481】、柔性超薄气体扩散层研制(Journal of Materials Chemistry A, 2020, 8, 5986-5994)、全固态直接甲醇燃料电池(Journal of Power Sources, 2020, 450, 227669)、柔性导电机理【Chinese Chemical Letters, 2019, 30(6), 1282-1288】,以及高安全性柔性燃料电池等(Advanced Energy Materials, 2021, 2103178)。 近日,科研团队合成和应用一种新型的琼脂凝胶与木质海绵的复合材料即凝胶/海绵复合材料,研制出一种安全、耐用、适应性强且具有出色柔性的自呼吸式直接甲醇燃料电池(DMFC)。该新型复合材料因其独特的成分和结构,具有吸收速度快(约10s即吸收饱和)、循环性能好(循环次数>10次)、甲醇吸收率高(>5.2 g/g)、含能高(>30.8 kWh/kg)、柔性好等优点。复合材料对甲醇溶液具有很强的保留能力,在29.4 kPa的压力下,含1.5%琼脂凝胶的复合材料可保留约90%的甲醇溶液。其面能量密度接近13.7 mWh cm-2。同时,研究使用凝胶/海绵复合材料制成的DMFC电堆经受住一系列破坏性试验,包括长针刺穿、切割、弯曲和压缩等。新型复合材料能吸收并保留住甲醇溶液,因而在进行破坏性试验时没有燃料泄漏,使DMFC避免了爆炸、着火等安全问题。此外,研究利用吸收材料固化气态或液态燃料的概念,可以普遍应用于提高其他燃料电池的安全性、适应性和柔性。 相关研究成果以Highly Safe, Durable, Adaptable, and Flexible Fuel Cell Using Gel/Sponge Composite Material为题,发表在Advanced Energy Materials上。研究工作得到国家重点研发计划和国家自然科学基金等的资助。
  • 《苏州纳米所周小春团队Adv. Mater.:通过微孔层设计在燃料电池的可回收性和可持续性方面取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-04-28
    •  燃料电池是一种直接将燃料的化学能转化为电能的装置,具有环境污染小、发电效率高等优势。以氢为燃料的燃料电池无碳排放,对从源头上控碳、减碳有着重要作用。近年来,燃料电池的产业化进程得到了飞速发展。然而,关于废弃燃料电池回收的研究处于较为匮乏的阶段。为完全回收燃料电池中的贵金属催化剂和离聚物,膜电极需要经过破碎并使用溶液将相应的材料分离。在该过程中,气体扩散层会参与到膜电极的回收中,一方面使得在电池中老化速度慢的气体扩散层不能重复使用,另一方面也会在回收贵金属和离聚物过程中产生大量的各类消耗,如溶剂等。   针对上述问题,中国科学院苏州纳米所周小春团队制备了一种由碳纳米管互穿网络构成的独立式微孔层。与传统的微孔层相比,这种独立式微孔层直接成型,而不需要涂敷在气体扩散层的大孔基底(一般为碳纸)上。互穿网络结构为这种独立式微孔层提供了高强度、高透气性、高导电性和高平整度等优异的物理性质,因此该独立式微孔层表现出了优异的电池性能(峰值功率达1.35 W cm-2)并能大幅促进燃料电池的可持续性。首先,该微孔层不仅适用于碳纸基底,也能够适用于各种碳基和金属基的多孔材料(峰值功率基本高于1 W cm-2),为高可回收型基底层提供了可靠的微孔层制备方案。其次,该微孔层大幅降低了催化层和气体扩散层以及微孔层和基底层的结合,使得燃料电池的气体扩散层能够在膜电极寿命到期后重复利用,将气体扩散层的寿命延长至138倍(峰值功率衰减8.2%)。最后,使用该独立式微孔层组装的膜电极在回收过程中,气体扩散层(除阴极微孔层)不需要参与到贵金属催化剂和离聚物的回收中,因此回收中的各种消耗得到了大幅减少(大于90%)。 相关工作以A Recyclable Standalone Microporous Layer with Interpenetrating Network for Sustainable Fuel Cells为题发表在国际知名期刊Advanced Materials上,中国科学院苏州纳米所博士生文青林为论文的第一作者。中国科学院苏州纳米所周小春研究员为通讯作者。该工作得到了国家重点研发计划和苏州市碳达峰碳中和科技支撑重点专项等项目资助。