《Compositional Effects of Large Graphene Oxide Sheets on the Spinnability and Properties of Polyurethane Composite Fibers》

  • 来源专题:绿色印刷—可穿戴电子
  • 编译者: 张宗鹏
  • 发布时间:2016-04-13
  • Keywords:

        elastomeric nanocomposites;graphene oxide;polyurethane;strain sensing;wet-spinning

    Recent advances in wearable electronics, technical textiles, and wearable strain sensing devices have resulted in extensive research on stretchable electrically conductive fibers. Addressing these areas require the development of efficient fiber processing methodologies that do not compromise the mechanical properties of the polymer (typically an elastomer) when nanomaterials are added as conductive fillers. It is highly desirable that the addition of conductive fillers provides not only electrical conductivity, but that these fillers also enhance the stiffness, strength, stretchability, and toughness of the polymer. Here, the compatibility of polyurethane (PU) and graphene oxide (GO) is utilized for the study of the properties of elastomeric conductive fibers prepared by wet-spinning. The GO-reinforced PU fibers demonstrate outstanding mechanical properties with a 200-fold and a threefold enhancement in Young's modulus and toughness, respectively. Postspinning thermal annealing of the fibers results in electrically conductive fibers with a low percolation threshold (≈0.37 wt% GO). An investigation into optimized fiber's electromechanical behavior reveals linear strain sensing abilities up to 70%. Results presented here provide practical insights on how to simultaneously maintain or improve electrical, mechanical, and electromechanical properties in conductive elastomer fibers.

  • 原文来源:;http://onlinelibrary.wiley.com/doi/10.1002/admi.201500672/abstract
相关报告
  • 《Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Continuous Remediation of Congo Red Dye Using... Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study Article Preview Abstract: This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 33-48 DOI: https://doi.org/10.4028/p-uyW1nl Citation: Cite this paper Online since: July 2024 Authors: Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady Keywords: Congo Red Dye, Continuous Water Treatment, Foam, Polyurethane-Polyaniline Nanocomposite, Response Surface Methodology (RSM) Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] J. Rao, G. Ravindiran, R. Subramanian, P. Saravanan, Journal of the Indian Chemical Society Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column, J. Indian Chem. Soc. 98 (2021) 100086. DOI: 10.1016/j.jics.2021.100086 Google Scholar [2] H. Zheng, J. Qi, R. Jiang, Y. Gao, X. Li, Adsorption of malachite green by magnetic litchi pericarps?: A response surface methodology investigation, J. Environ. Manage. 162 (2015) 232–239. DOI: 10.1016/j.jenvman.2015.07.057 Google Scholar [3] S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo Red Toxicity towards Different Living Organisms: A Review, Processes. 11 (2023) 1–12. DOI: 10.3390/pr11030807 Google Scholar [4] L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021). DOI: 10.1016/j.mtcomm.2021.102155 Google Scholar [5] L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021) 126130. DOI: 10.1016/j.jhazmat.2021.126130 Google Scholar [6] M. Tanzifi, M. Tavakkoli Yaraki, M. Karami, S. Karimi, A. Dehghani Kiadehi, K. Karimipour, S. Wang, Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites, J. Colloid Interface Sci. 519 (2018) 154–173. DOI: 10.1016/j.jcis.2018.02.059 Google Scholar [7] C. Seto, B.P. Chang, C. Tzoganakis, T.H. Mekonnen, Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption, Int. J. Biol. Macromol. 185 (2021) 629–643. DOI: 10.1016/j.ijbiomac.2021.06.185 Google Scholar [8] L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021). DOI: 10.1016/j.jhazmat.2021.126130 Google Scholar [9] Y. Huang, B. Yuan, Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property, Mater. Lett. 298 (2021). DOI: 10.1016/j.matlet.2021.129974 Google Scholar [10] S.A. Vali, M. Baghdadi, M.A. Abdoli, Immobilization of polyaniline nanoparticles on the polyurethane foam derived from waste materials: A porous reactive fixed-bed medium for removal of mercury from contaminated waters, J. Environ. Chem. Eng. 6 (2018) 6612–6622. DOI: 10.1016/j.jece.2018.09.042 Google Scholar [11] M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres, Chem. Eng. J. 228 (2013) 506–515. DOI: 10.1016/j.cej.2013.05.026 Google Scholar [12] V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Polyaniline/chitosan composite: An eco-friendly polymer for enhanced removal of dyes from aqueous solution, Synth. Met. 162 (2012) 974–980. https://doi.org/10.1016/j.synthmet. 2012.04.015. DOI: 10.1016/j.synthmet.2012.04.015 Google Scholar [13] A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater. 174 (2010) 398–403. DOI: 10.1016/j.jhazmat.2009.09.066 Google Scholar [14] R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, 99 (2008) 2938–2946. DOI: 10.1016/j.biortech.2007.06.027 Google Scholar [15] S.D. Ashrafi, G.H. Safari, K. Sharafi, H. Kamani, J. Jaafari, Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies, Int. J. Biol. Macromol. 185 (2021) 66–76. https://doi.org/10.1016/j.ijbiomac. 2021.06.081. DOI: 10.1016/j.ijbiomac.2021.06.081 Google Scholar [16] S. Das, S. Mishra, Journal of Environmental Chemical Engineering Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach, Biochem. Pharmacol. 5 (2017) 588–600. DOI: 10.1016/j.jece.2016.12.034 Google Scholar [17] K. Dash, N.K. Hota, B.P. Sahoo, biopolymers Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical , thermal and excellent dielectric properties?: exploring the effect of ultralow-level loading of SWCNT and temperature, J. Mater. Sci. 55 (2020) 12568–12591. DOI: 10.1007/s10853-020-04834-w Google Scholar [18] S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl 12 O 19 ( M ? Ca , sr , Ba ) -Based photocatalysts Boosts Near ultraviolet and visible light-driven photocatalytic performance, 24 (2022). DOI: 10.1016/j.mtchem.2022.100942 Google Scholar [19] L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021). DOI: 10.1016/j.mtcomm.2021.102155 Google Scholar [20] S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V. Jagadeesha Angadi, Z. Yi, D. Li, Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023). https://doi.org/10.1016/j.apsusc. 2022.154977. DOI: 10.1016/j.apsusc.2022.154977 Google Scholar [21] M. Jharwal, S. Mittal, C. Frsc, M. Singla, Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydroge, (2013). DOI: 10.1007/s10854-012-0933-0 Google Scholar [22] N.A. Rangel-vázquez, R. Salgado-delgado, E. García-hernández, A.M. Mendoza-martínez, Characterization of Copolymer Based in Polyurethane and Polyaniline ( PU / PANI ), (2015). DOI: 10.29356/jmcs.v53i4.979 Google Scholar [23] K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, XRD studies of chitin-based polyurethane elastomers, Int. J. Biol. Macromol. 43 (2008) 136–141. https://doi.org/. DOI: 10.1016/j.ijbiomac.2008.04.009 Google Scholar [24] D. Paul, S. Paul, N. Roohpour, M. Wilks, P. Vadgama, Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane, J. Funct. Biomater. 4 (2013) 358–375. DOI: 10.3390/jfb4040358 Google Scholar [25] P. Sirajudheen, S. Vigneshwaran, V.C.R. Kasim, M.C. Basheer, S. Meenakshi, International Journal of Biological Macromolecules Mechanistic view of MoS 2 confined chitosan-polyaniline hybrid composite for the photo-oxidation of cationic dyes, Int. J. Biol. Macromol. 249 (2023) 126008. DOI: 10.1016/j.ijbiomac.2023.126008 Google Scholar [26] N.M.Y. Al-mahbashi, S.R.M. Kutty, A.H. Jagaba, A. Al-nini, A.T. Sholagberu, B.N.S. Aldhawi, U. Rathnayake, Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals: Optimization by response surface methodology, Case Stud. Chem. Environ. Eng. 8 (2023) 100437. DOI: 10.1016/j.cscee.2023.100437 Google Scholar [27] T.R. Sarker, S. Nanda, A.K. Dalai, Parametric studies on hydrothermal gasification of biomass pellets using Box-Behnken experimental design to produce fuel gas and hydrochar, J. Clean. Prod. 388 (2023) 135804. DOI: 10.1016/j.jclepro.2022.135804 Google Scholar [28] J. Prakash Maran, S. Manikandan, V. Mekala, Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box-Behnken design with desirability function, Ind. Crops Prod. 49 (2013) 304–311. DOI: 10.1016/j.indcrop.2013.05.012 Google Scholar [29] K. Vadakkan, R. Gunasekaran, A.A. Choudhury, A. Ravi, S. Arumugham, J. Hemapriya, S. Vijayanand, Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract, Rhizosphere. 6 (2018) 134–140. DOI: 10.1016/j.rhisph.2018.06.005 Google Scholar [30] S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C. V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies, J. Colloid Interface Sci. 284 (2005) 78–82. DOI: 10.1016/j.jcis.2004.09.027 Google Scholar [31] T.A.O.K. Meetiyagoda, T. Takahashi, T. Fujino, Response surface optimization of chemical coagulation for solid–liquid separation of dairy manure slurry through Box–Behnken design with desirability function, Heliyon. 9 (2023) e17632. https://doi.org/10.1016/j.heliyon. 2023.e17632. DOI: 10.1016/j.heliyon.2023.e17632 Google Scholar [32] R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol. 99 (2008) 2938–2946. DOI: 10.1016/j.biortech.2007.06.027 Google Scholar [33] S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol. 42 (2005) 265–271. https://doi.org/10.1016/j.seppur. 2004.09.001. DOI: 10.1016/j.seppur.2004.09.001 Google Scholar [34] H. Rashidi, P. Rasouli, H. Azimi, A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent?: Microcontactor mass transfer study Sum of Squares, Energy. 244 (2022) 122711. DOI: 10.1016/j.energy.2021.122711 Google Scholar [35] H. Luo, J. Jiang, Arramel, M. Li, K. Sun, Y. Zheng, Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries, J. Colloid Interface Sci. 654 (2024) 289–299. DOI: 10.1016/j.jcis.2023.10.029 Google Scholar [36] F.D.S. Gorza, G.C. Pedro, J. Romário, J.C. Medina-llamas, J.J. Alcaraz-espinoza, A.E. Chávez-guajardo, C.P. De Melo, Journal of the Taiwan Institute of Chemical Engineers Electrospun polystyrene- ( emeraldine base ) mats as high-performance materials for dye removal from aqueous media, J. Taiwan Inst. Chem. Eng. 82 (2018) 300–311. DOI: 10.1016/j.jtice.2017.10.034 Google Scholar [37] S. Zhai, R. Chen, J. Liu, J. Xu, H. Jiang, N-doped magnetic carbon aerogel for the efficient adsorption of Congo red, J. Taiwan Inst. Chem. Eng. 120 (2021) 161–168. DOI: 10.1016/j.jtice.2021.03.002 Google Scholar [38] A. Jonderian, M. Ammar, H. El-Rassy, M. Al-Ghoul, Combined experimental and DFT study on the adsorption of congo red dye using self-assembled hierarchical microspheres of lanthanum hydroxide, Colloids Surfaces A Physicochem. Eng. Asp. 681 (2024) 132728. DOI: 10.1016/j.colsurfa.2023.132728 Google Scholar [39] V. Subbaiah Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G. Mallikarjuna Reddy, G. V. Zyryanov, Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties, J. Mol. Liq. 345 (2022) 118255. DOI: 10.1016/j.molliq.2021.118255 Google Scholar [40] V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf. 141 (2017) 226–234. DOI: 10.1016/j.ecoenv.2017.03.036 Google Scholar [41] E.N. Seyahmazegi, R. Mohammad-Rezaei, H. Razmi, Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: Application for anionic dye Congo red removal, Chem. Eng. Res. Des. 109 (2016) 824–834. https://doi.org/10.1016/j.cherd. 2016.04.001. DOI: 10.1016/j.cherd.2016.04.001 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved
  • 《Improved-quality graphene films via the synergism of large nanosheet aligning and nanotube bridging for flexible supercapacitors》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-28
    • Skip to content Accessibility Links Skip to content Skip to search IOPscience Skip to Journals list Accessibility help IOP Science home Accessibility Help Search Journals Journals list Browse more than 100 science journal titles Subject collections Read the very best research published in IOP journals Publishing partners Partner organisations and publications Open access IOP Publishing open access policy guide IOP Conference Series Read open access proceedings from science conferences worldwide Books Publishing Support Login IOPscience login / Sign Up Close Click here to close this panel. Search all IOPscience content Article Lookup Select journal (required) Select journal (required)2D Mater. (2014 - present)Acta Phys. Sin. (Overseas Edn) (1992 - 1999)Adv. Nat. Sci: Nanosci. Nanotechnol. (2010 - present)Appl. Phys. Express (2008 - present)Biofabrication (2009 - present)Bioinspir. Biomim. (2006 - present)Biomed. Mater. (2006 - present)Biomed. Phys. Eng. Express (2015 - present)Br. J. Appl. Phys. (1950 - 1967)Chin. J. Astron. Astrophys. (2001 - 2008)Chin. J. Chem. Phys. (1987 - 2007)Chin. J. Chem. Phys. (2008 - 2012)Chinese Phys. (2000 - 2007)Chinese Phys. B (2008 - present)Chinese Phys. C (2008 - present)Chinese Phys. Lett. (1984 - present)Class. Quantum Grav. (1984 - present)Clin. Phys. Physiol. Meas. (1980 - 1992)Combustion Theory and Modelling (1997 - 2004)Commun. Theor. Phys. (1982 - present)Comput. Sci. Discov. (2008 - 2015)Converg. Sci. Phys. Oncol. (2015 - 2018)Distrib. Syst. Engng. (1993 - 1999)ECS Adv. (2022 - present)ECS Electrochem. Lett. (2012 - 2015)ECS J. Solid State Sci. Technol. (2012 - present)ECS Sens. Plus (2022 - present)ECS Solid State Lett. (2012 - 2015)ECS Trans. (2005 - present)EPL (1986 - present)Electrochem. Soc. Interface (1992 - present)Electrochem. Solid-State Lett. (1998 - 2012)Electron. Struct. (2019 - present)Eng. Res. Express (2019 - present)Environ. Res. Commun. (2018 - present)Environ. Res. Lett. (2006 - present)Environ. Res.: Climate (2022 - present)Environ. Res.: Ecology (2022 - present)Environ. Res.: Energy (2024 - present)Environ. Res.: Food Syst. (2024 - present)Environ. Res.: Health (2022 - present)Environ. Res.: Infrastruct. Sustain. (2021 - present)Eur. J. Phys. (1980 - present)Flex. Print. Electron. (2015 - present)Fluid Dyn. Res. (1986 - present)Funct. Compos. Struct. (2018 - present)IOP Conf. Ser.: Earth Environ. Sci. (2008 - present)IOP Conf. Ser.: Mater. Sci. Eng. (2009 - present)IOPSciNotes (2020 - 2022)Int. J. Extrem. Manuf. (2019 - present)Inverse Problems (1985 - present)Izv. Math. (1993 - present)J. Breath Res. (2007 - present)J. Cosmol. Astropart. Phys. (2003 - present)J. Electrochem. Soc. (1902 - present)J. Geophys. Eng. (2004 - 2018)J. High Energy Phys. (1997 - 2009)J. Inst. (2006 - present)J. Micromech. Microeng. (1991 - present)J. Neural Eng. (2004 - present)J. Nucl. Energy, Part C Plasma Phys. (1959 - 1966)J. Opt. (1977 - 1998)J. Opt. (2010 - present)J. Opt. A: Pure Appl. Opt. (1999 - 2009)J. Opt. B: Quantum Semiclass. Opt. (1999 - 2005)J. Phys. A: Gen. Phys. (1968 - 1972)J. Phys. A: Math. Gen. (1975 - 2006)J. Phys. A: Math. Nucl. Gen. (1973 - 1974)J. Phys. A: Math. Theor. (2007 - present)J. Phys. B: At. Mol. Opt. Phys. (1988 - present)J. Phys. B: Atom. Mol. Phys. (1968 - 1987)J. Phys. C: Solid State Phys. (1968 - 1988)J. Phys. Commun. (2017 - present)J. Phys. Complex. (2019 - present)J. Phys. D: Appl. Phys. (1968 - present)J. Phys. E: Sci. Instrum. (1968 - 1989)J. Phys. Energy (2018 - present)J. Phys. F: Met. Phys. (1971 - 1988)J. Phys. G: Nucl. Part. Phys. (1989 - present)J. Phys. G: Nucl. Phys. (1975 - 1988)J. Phys. Mater. (2018 - present)J. Phys. Photonics (2018 - present)J. Phys.: Condens. Matter (1989 - present)J. Phys.: Conf. Ser. (2004 - present)J. Radiol. Prot. (1988 - present)J. Sci. Instrum. (1923 - 1967)J. Semicond. (2009 - present)J. Soc. Radiol. Prot. (1981 - 1987)J. Stat. Mech. (2004 - present)JoT (2000 - 2004)Jpn. J. Appl. Phys. (1962 - present)Laser Phys. (2013 - present)Laser Phys. Lett. (2004 - present)Mach. Learn.: Earth (2025 - present)Mach. Learn.: Eng. (2025 - present)Mach. Learn.: Health (2025 - present)Mach. Learn.: Sci. Technol. (2019 - present)Mater. Futures (2022 - present)Mater. Quantum. Technol. (2020 - present)Mater. Res. Express (2014 - present)Math. USSR Izv. (1967 - 1992)Math. USSR Sb. (1967 - 1993)Meas. Sci. Technol. (1990 - present)Meet. Abstr. (2002 - present)Methods Appl. Fluoresc. (2013 - present)Metrologia (1965 - present)Modelling Simul. Mater. Sci. Eng. (1992 - present)Multifunct. Mater. (2018 - 2022)Nano Ex. (2020 - present)Nano Futures (2017 - present)Nanotechnology (1990 - present)Network (1990 - 2004)Neuromorph. Comput. Eng. (2021 - present)New J. Phys. (1998 - present)Nonlinearity (1988 - present)Nouvelle Revue d'Optique (1973 - 1976)Nouvelle Revue d'Optique Appliquée (1970 - 1972)Nucl. Fusion (1960 - present)PASP (1889 - present)Phys. Biol. (2004 - present)Phys. Bull. (1950 - 1988)Phys. Educ. (1966 - present)Phys. Med. Biol. (1956 - present)Phys. Scr. (1970 - present)Phys. World (1988 - present)Phys.-Usp. (1993 - present)Physics in Technology (1973 - 1988)Physiol. Meas. (1993 - present)Plasma Phys. Control. Fusion (1984 - present)Plasma Physics (1967 - 1983)Plasma Res. Express (2018 - 2022)Plasma Sci. Technol. (1999 - present)Plasma Sources Sci. Technol. (1992 - present)Proc. Phys. Soc. (1926 - 1948)Proc. Phys. Soc. (1958 - 1967)Proc. Phys. Soc. A (1949 - 1957)Proc. Phys. Soc. B (1949 - 1957)Proc. Phys. Soc. London (1874 - 1925)Proc. Vol. (1967 - 2005)Prog. Biomed. Eng. (2018 - present)Prog. Energy (2018 - present)Public Understand. Sci. (1992 - 2002)Pure Appl. Opt. (1992 - 1998)Quantitative Finance (2001 - 2004)Quantum Electron. (1993 - present)Quantum Opt. (1989 - 1994)Quantum Sci. Technol. (2015 - present)Quantum Semiclass. Opt. (1995 - 1998)Rep. Prog. Phys. (1934 - present)Res. Astron. Astrophys. (2009 - present)Research Notes of the AAS (2017 - present)RevPhysTech (1970 - 1972)Russ. Chem. Rev. (1960 - present)Russ. Math. Surv. (1960 - present)Sb. Math. (1993 - present)Sci. Technol. Adv. Mater. (2000 - 2015)Semicond. Sci. Technol. (1986 - present)Smart Mater. Struct. (1992 - present)Sov. J. Quantum Electron. (1971 - 1992)Sov. Phys. Usp. (1958 - 1992)Supercond. Sci. Technol. (1988 - present)Surf. Topogr.: Metrol. Prop. (2013 - present)Sustain. Sci. Technol. (2024 - present)The Astronomical Journal (1849 - present)The Astrophysical Journal (1996 - present)The Astrophysical Journal Letters (2010 - present)The Astrophysical Journal Supplement Series (1996 - present)The Planetary Science Journal (2020 - present)Trans. Amer: Electrochem. Soc. (1930 - 1930)Trans. Electrochem. Soc. (1931 - 1948)Trans. Opt. Soc. (1899 - 1932)Transl. Mater. Res. (2014 - 2018)Waves Random Media (1991 - 2004) Volume number: Issue number (if known): Article or page number: Nanotechnology Purpose-led Publishing is a coalition of three not-for-profit publishers in the field of physical sciences: AIP Publishing, the American Physical Society and IOP Publishing. Together, as publishers that will always put purpose above profit, we have defined a set of industry standards that underpin high-quality, ethical scholarly communications. We are proudly declaring that science is our only shareholder. ACCEPTED MANUSCRIPT Improved-quality graphene films via the synergism of large nanosheet aligning and nanotube bridging for flexible supercapacitors Xuan Xu1, Zhenhu Li1, Haoxiang Li2, Yongsu Li1, Yu Zeng1 and Shuangyi Liu1 Accepted Manuscript online 25 July 2024 ? © 2024 IOP Publishing Ltd What is an Accepted Manuscript? DOI 10.1088/1361-6528/ad6774 Download Accepted Manuscript PDF Figures Skip to each figure in the article Tables Skip to each table in the article References Citations Article data Skip to each data item in the article What is article data? Open science Article metrics Submit Submit to this Journal Permissions Get permission to re-use this article Share this article Article and author information Author e-mailslizhenhu@cigit.ac.cn Author affiliations1 Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P.R. China, Chongqing, Sichuan, 400714, CHINA 2 Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology, Chongqing 400714, P.R. China, Chongqing, Sichuan, 401122, CHINA ORCID iDsZhenhu Li https://orcid.org/0000-0001-8574-783X Dates Received 17 January 2024 Revised 22 April 2024 Accepted 25 July 2024 Accepted Manuscript online 25 July 2024 Peer review information Method: Single-anonymous Revisions: 1 Screened for originality? Yes Journal RSS Sign up for new issue notifications 10.1088/1361-6528/ad6774 Abstract Scalable production of reduced graphene oxide (rGO) films with high mechanical-electrical properties are desirable candidates for wearable electronics devices and energy storage applications. Removing structural incompleteness such as wrinkles or voids in the graphene films generated from the assemble process would greatly optimize their mechanical properties. However, the densely stacked graphene sheets in the films degrades their ionic kinetics and thus limits their development. Here, a horizontal-longitudinal-structure modulating strategy is demonstrated to produce enhanced mechanical, conductive and capacitive graphene films. Typically, two-dimensional (2D) large graphene sheets (LGS) induce regular stacking of GO during assembling process to reduce wrinkles, while one-dimensional (1D) single-walled carbon nanotubes (SWCNT) bridge with graphene sheets to strengthen the multidirectional intercalation and reduce GO layer restacking. The simultaneous incorporation of LGS and SWCNT synergistically makes fine microstructure with improving the alignment of graphene sheets, increasing continuous conductive pathways to facilitate electron transport, and enlarging interlayer spacing to promote the electrolyte ion diffusion. As a result, the obtained graphene films are flat and exhibit signally reinforced mechanical properties, electrical conductivity (38727 S m-1), as well as specific capacitance (232 F g-1) as supercapacitor electrodes than those of original rGO films. Moreover, owing to the comprehensive improved properties, the flexible gel supercapacitor assembled by the graphene film-based electrodes shows high energy density, good flexibility and excellent cycling stability (93.8% capacitance retention after 10000 cycles). This work provides a general strategy to manufacture robust graphene structural materials for energy storage applications in flexible and wearable electronics. Export citation and abstract BibTeX RIS During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully protected by copyright and cannot be reused or reposted elsewhere. As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period. After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0 Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record. Back to top 10.1088/1361-6528/ad6774 You may also like Journal articles Improving sensor response using reduced graphene oxide film transistor biosensor by controlling the adsorption of pyrene as an anchor molecule Functional chemically modified graphene film: microstructure and electrical transport behavior Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity Inkjet-Printed Reduced Graphene Oxide (rGO) Films For Electrocatalytic Applications Graphene oxide as a dual-function conductive binder for PEEK-derived microporous carbons in high performance supercapacitors Solution-based, flexible, and transparent patterned reduced graphene oxide electrodes for lab-on-chip applications IOPscience Journals Books IOP Conference Series About IOPscience Contact Us Developing countries access IOP Publishing open access policy Accessibility IOP Publishing Copyright 2024 IOP Publishing Terms and Conditions Disclaimer Privacy and Cookie Policy Publishing Support Authors Reviewers Conference Organisers This site uses cookies. By continuing to use this site you agree to our use of cookies. IOP Publishing Twitter page IOP Publishing Facebook page IOP Publishing LinkedIn page IOP Publishing Youtube page IOP Publishing WeChat QR code IOP Publishing Weibo page