Registration
Log In
For Libraries
For Publication
Downloads
News
About Us
Contact Us
For Libraries
For Publication
Downloads
News
About Us
Contact Us
Search
Paper Titles
Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance
p.1
Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants
p.17
Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study
p.33
Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures
p.49
Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect
p.65
Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3)
p.79
Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy
p.91
HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Continuous Remediation of Congo Red Dye Using...
Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study
Article Preview
Abstract:
This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment.
Access through your institution
Add to Cart
You might also be interested in these eBooks
View Preview
Info:
Periodical:
Journal of Nano Research (Volume 83)
Pages:
33-48
DOI:
https://doi.org/10.4028/p-uyW1nl
Citation:
Cite this paper
Online since:
July 2024
Authors:
Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady
Keywords:
Congo Red Dye, Continuous Water Treatment, Foam, Polyurethane-Polyaniline Nanocomposite, Response Surface Methodology (RSM)
Export:
RIS, BibTeX
Price:
Permissions:
Request Permissions
Share:
- Corresponding Author
References
[1]
J. Rao, G. Ravindiran, R. Subramanian, P. Saravanan, Journal of the Indian Chemical Society Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column, J. Indian Chem. Soc. 98 (2021) 100086.
DOI: 10.1016/j.jics.2021.100086
Google Scholar
[2]
H. Zheng, J. Qi, R. Jiang, Y. Gao, X. Li, Adsorption of malachite green by magnetic litchi pericarps?: A response surface methodology investigation, J. Environ. Manage. 162 (2015) 232–239.
DOI: 10.1016/j.jenvman.2015.07.057
Google Scholar
[3]
S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo Red Toxicity towards Different Living Organisms: A Review, Processes. 11 (2023) 1–12.
DOI: 10.3390/pr11030807
Google Scholar
[4]
L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021).
DOI: 10.1016/j.mtcomm.2021.102155
Google Scholar
[5]
L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021) 126130.
DOI: 10.1016/j.jhazmat.2021.126130
Google Scholar
[6]
M. Tanzifi, M. Tavakkoli Yaraki, M. Karami, S. Karimi, A. Dehghani Kiadehi, K. Karimipour, S. Wang, Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites, J. Colloid Interface Sci. 519 (2018) 154–173.
DOI: 10.1016/j.jcis.2018.02.059
Google Scholar
[7]
C. Seto, B.P. Chang, C. Tzoganakis, T.H. Mekonnen, Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption, Int. J. Biol. Macromol. 185 (2021) 629–643.
DOI: 10.1016/j.ijbiomac.2021.06.185
Google Scholar
[8]
L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021).
DOI: 10.1016/j.jhazmat.2021.126130
Google Scholar
[9]
Y. Huang, B. Yuan, Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property, Mater. Lett. 298 (2021).
DOI: 10.1016/j.matlet.2021.129974
Google Scholar
[10]
S.A. Vali, M. Baghdadi, M.A. Abdoli, Immobilization of polyaniline nanoparticles on the polyurethane foam derived from waste materials: A porous reactive fixed-bed medium for removal of mercury from contaminated waters, J. Environ. Chem. Eng. 6 (2018) 6612–6622.
DOI: 10.1016/j.jece.2018.09.042
Google Scholar
[11]
M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres, Chem. Eng. J. 228 (2013) 506–515.
DOI: 10.1016/j.cej.2013.05.026
Google Scholar
[12]
V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Polyaniline/chitosan composite: An eco-friendly polymer for enhanced removal of dyes from aqueous solution, Synth. Met. 162 (2012) 974–980. https://doi.org/10.1016/j.synthmet. 2012.04.015.
DOI: 10.1016/j.synthmet.2012.04.015
Google Scholar
[13]
A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater. 174 (2010) 398–403.
DOI: 10.1016/j.jhazmat.2009.09.066
Google Scholar
[14]
R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, 99 (2008) 2938–2946.
DOI: 10.1016/j.biortech.2007.06.027
Google Scholar
[15]
S.D. Ashrafi, G.H. Safari, K. Sharafi, H. Kamani, J. Jaafari, Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies, Int. J. Biol. Macromol. 185 (2021) 66–76. https://doi.org/10.1016/j.ijbiomac. 2021.06.081.
DOI: 10.1016/j.ijbiomac.2021.06.081
Google Scholar
[16]
S. Das, S. Mishra, Journal of Environmental Chemical Engineering Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach, Biochem. Pharmacol. 5 (2017) 588–600.
DOI: 10.1016/j.jece.2016.12.034
Google Scholar
[17]
K. Dash, N.K. Hota, B.P. Sahoo, biopolymers Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical , thermal and excellent dielectric properties?: exploring the effect of ultralow-level loading of SWCNT and temperature, J. Mater. Sci. 55 (2020) 12568–12591.
DOI: 10.1007/s10853-020-04834-w
Google Scholar
[18]
S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl 12 O 19 ( M ? Ca , sr , Ba ) -Based photocatalysts Boosts Near ultraviolet and visible light-driven photocatalytic performance, 24 (2022).
DOI: 10.1016/j.mtchem.2022.100942
Google Scholar
[19]
L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021).
DOI: 10.1016/j.mtcomm.2021.102155
Google Scholar
[20]
S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V. Jagadeesha Angadi, Z. Yi, D. Li, Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023). https://doi.org/10.1016/j.apsusc. 2022.154977.
DOI: 10.1016/j.apsusc.2022.154977
Google Scholar
[21]
M. Jharwal, S. Mittal, C. Frsc, M. Singla, Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydroge, (2013).
DOI: 10.1007/s10854-012-0933-0
Google Scholar
[22]
N.A. Rangel-vázquez, R. Salgado-delgado, E. García-hernández, A.M. Mendoza-martínez, Characterization of Copolymer Based in Polyurethane and Polyaniline ( PU / PANI ), (2015).
DOI: 10.29356/jmcs.v53i4.979
Google Scholar
[23]
K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, XRD studies of chitin-based polyurethane elastomers, Int. J. Biol. Macromol. 43 (2008) 136–141. https://doi.org/.
DOI: 10.1016/j.ijbiomac.2008.04.009
Google Scholar
[24]
D. Paul, S. Paul, N. Roohpour, M. Wilks, P. Vadgama, Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane, J. Funct. Biomater. 4 (2013) 358–375.
DOI: 10.3390/jfb4040358
Google Scholar
[25]
P. Sirajudheen, S. Vigneshwaran, V.C.R. Kasim, M.C. Basheer, S. Meenakshi, International Journal of Biological Macromolecules Mechanistic view of MoS 2 confined chitosan-polyaniline hybrid composite for the photo-oxidation of cationic dyes, Int. J. Biol. Macromol. 249 (2023) 126008.
DOI: 10.1016/j.ijbiomac.2023.126008
Google Scholar
[26]
N.M.Y. Al-mahbashi, S.R.M. Kutty, A.H. Jagaba, A. Al-nini, A.T. Sholagberu, B.N.S. Aldhawi, U. Rathnayake, Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals: Optimization by response surface methodology, Case Stud. Chem. Environ. Eng. 8 (2023) 100437.
DOI: 10.1016/j.cscee.2023.100437
Google Scholar
[27]
T.R. Sarker, S. Nanda, A.K. Dalai, Parametric studies on hydrothermal gasification of biomass pellets using Box-Behnken experimental design to produce fuel gas and hydrochar, J. Clean. Prod. 388 (2023) 135804.
DOI: 10.1016/j.jclepro.2022.135804
Google Scholar
[28]
J. Prakash Maran, S. Manikandan, V. Mekala, Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box-Behnken design with desirability function, Ind. Crops Prod. 49 (2013) 304–311.
DOI: 10.1016/j.indcrop.2013.05.012
Google Scholar
[29]
K. Vadakkan, R. Gunasekaran, A.A. Choudhury, A. Ravi, S. Arumugham, J. Hemapriya, S. Vijayanand, Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract, Rhizosphere. 6 (2018) 134–140.
DOI: 10.1016/j.rhisph.2018.06.005
Google Scholar
[30]
S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C. V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies, J. Colloid Interface Sci. 284 (2005) 78–82.
DOI: 10.1016/j.jcis.2004.09.027
Google Scholar
[31]
T.A.O.K. Meetiyagoda, T. Takahashi, T. Fujino, Response surface optimization of chemical coagulation for solid–liquid separation of dairy manure slurry through Box–Behnken design with desirability function, Heliyon. 9 (2023) e17632. https://doi.org/10.1016/j.heliyon. 2023.e17632.
DOI: 10.1016/j.heliyon.2023.e17632
Google Scholar
[32]
R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol. 99 (2008) 2938–2946.
DOI: 10.1016/j.biortech.2007.06.027
Google Scholar
[33]
S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol. 42 (2005) 265–271. https://doi.org/10.1016/j.seppur. 2004.09.001.
DOI: 10.1016/j.seppur.2004.09.001
Google Scholar
[34]
H. Rashidi, P. Rasouli, H. Azimi, A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent?: Microcontactor mass transfer study Sum of Squares, Energy. 244 (2022) 122711.
DOI: 10.1016/j.energy.2021.122711
Google Scholar
[35]
H. Luo, J. Jiang, Arramel, M. Li, K. Sun, Y. Zheng, Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries, J. Colloid Interface Sci. 654 (2024) 289–299.
DOI: 10.1016/j.jcis.2023.10.029
Google Scholar
[36]
F.D.S. Gorza, G.C. Pedro, J. Romário, J.C. Medina-llamas, J.J. Alcaraz-espinoza, A.E. Chávez-guajardo, C.P. De Melo, Journal of the Taiwan Institute of Chemical Engineers Electrospun polystyrene- ( emeraldine base ) mats as high-performance materials for dye removal from aqueous media, J. Taiwan Inst. Chem. Eng. 82 (2018) 300–311.
DOI: 10.1016/j.jtice.2017.10.034
Google Scholar
[37]
S. Zhai, R. Chen, J. Liu, J. Xu, H. Jiang, N-doped magnetic carbon aerogel for the efficient adsorption of Congo red, J. Taiwan Inst. Chem. Eng. 120 (2021) 161–168.
DOI: 10.1016/j.jtice.2021.03.002
Google Scholar
[38]
A. Jonderian, M. Ammar, H. El-Rassy, M. Al-Ghoul, Combined experimental and DFT study on the adsorption of congo red dye using self-assembled hierarchical microspheres of lanthanum hydroxide, Colloids Surfaces A Physicochem. Eng. Asp. 681 (2024) 132728.
DOI: 10.1016/j.colsurfa.2023.132728
Google Scholar
[39]
V. Subbaiah Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G. Mallikarjuna Reddy, G. V. Zyryanov, Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties, J. Mol. Liq. 345 (2022) 118255.
DOI: 10.1016/j.molliq.2021.118255
Google Scholar
[40]
V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf. 141 (2017) 226–234.
DOI: 10.1016/j.ecoenv.2017.03.036
Google Scholar
[41]
E.N. Seyahmazegi, R. Mohammad-Rezaei, H. Razmi, Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: Application for anionic dye Congo red removal, Chem. Eng. Res. Des. 109 (2016) 824–834. https://doi.org/10.1016/j.cherd. 2016.04.001.
DOI: 10.1016/j.cherd.2016.04.001
Google Scholar
Cited by
Related Articles
Citation
Added To Cart
This paper has been added to your cart
To Shop
To Cart
For Libraries
For Publication
Insights
Downloads
About Us
Policy & Ethics
Contact Us
Imprint
Privacy Policy
Sitemap
All Conferences
All Special Issues
All News
Read & Publish Agreements
Scientific.Net is a registered brand of Trans Tech Publications Ltd
© 2024 by Trans Tech Publications Ltd. All Rights Reserved