《Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study》

  • 来源专题:现代化工
  • 编译者: 武春亮
  • 发布时间:2024-07-25






















  • Registration


    Log In
























    For Libraries
    For Publication
    Downloads
    News
    About Us
    Contact Us






    For Libraries
    For Publication
    Downloads
    News
    About Us
    Contact Us





    Search





















    Paper Titles








    Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance

    p.1









    Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants

    p.17









    Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study

    p.33









    Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures

    p.49









    Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect

    p.65









    Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3)

    p.79









    Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy

    p.91










    HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Continuous Remediation of Congo Red Dye Using...

    Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study


















    Article Preview








    Abstract:

    This study employed an innovative approach, utilizing prepared dried polyurethane-polyaniline nano-composite, through in-situ polymerization, for continuous remediation of Congo red dye. Response Surface Methodology (RSM) based on the Box-Behnken design (BBD) model was utilized to optimize the processing parameters, including initial dye concentration, flow rate, and pH. The two-factor interaction (2FI) model emerged as the most significant, highlighting the influence of individual and interaction effects of the factors. Optimization of the dye remediation process yielded the optimal conditions of a flow rate of 10 mL/min, acidic pH of 5.00, and dye concentration of 20 mg/L, resulting in an impressive, predicted removal efficiency of 99.09% agreeing with the experimental value. Moreover, the maximum adsorption capacity was determined to be 329.68 mg/g. Characterization of the adsorbent material involved techniques such as Scanning electron microscopy (SEM), Fourier transforms infrared spectra (FTIR), X-ray spectroscopy (XRD), and Zeta potential analysis. This material offers a sustainable alternative in industries to treat Congo red dye before being disposed of into the environment.










    Access through your institution





    Add to Cart









    You might also be interested in these eBooks






    View Preview






    Info:






    Periodical:




    Journal of Nano Research (Volume 83)








    Pages:




    33-48








    DOI:




    https://doi.org/10.4028/p-uyW1nl








    Citation:




    Cite this paper








    Online since:




    July 2024








    Authors:






    Abubakar Ibrahim, Usama Nour Eldemerdash, Tsuyoshi Yoshitake, Wael M. Khair-Eldeen, Marwa Elkady







    Keywords:




    Congo Red Dye, Continuous Water Treatment, Foam, Polyurethane-Polyaniline Nanocomposite, Response Surface Methodology (RSM)







    Export:




    RIS, BibTeX








    Price:













    Permissions:







    Request Permissions










    Share:



























    - Corresponding Author











    References








    [1]
    J. Rao, G. Ravindiran, R. Subramanian, P. Saravanan, Journal of the Indian Chemical Society Optimization of process conditions using RSM and ANFIS for the removal of Remazol Brilliant Orange 3R in a packed bed column, J. Indian Chem. Soc. 98 (2021) 100086.


    DOI: 10.1016/j.jics.2021.100086

    Google Scholar



    [2]
    H. Zheng, J. Qi, R. Jiang, Y. Gao, X. Li, Adsorption of malachite green by magnetic litchi pericarps?: A response surface methodology investigation, J. Environ. Manage. 162 (2015) 232–239.


    DOI: 10.1016/j.jenvman.2015.07.057

    Google Scholar



    [3]
    S.I. Siddiqui, E.S. Allehyani, S.A. Al-Harbi, Z. Hasan, M.A. Abomuti, H.K. Rajor, S. Oh, Investigation of Congo Red Toxicity towards Different Living Organisms: A Review, Processes. 11 (2023) 1–12.


    DOI: 10.3390/pr11030807

    Google Scholar



    [4]
    L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021).


    DOI: 10.1016/j.mtcomm.2021.102155

    Google Scholar



    [5]
    L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021) 126130.


    DOI: 10.1016/j.jhazmat.2021.126130

    Google Scholar



    [6]
    M. Tanzifi, M. Tavakkoli Yaraki, M. Karami, S. Karimi, A. Dehghani Kiadehi, K. Karimipour, S. Wang, Modelling of dye adsorption from aqueous solution on polyaniline/carboxymethyl cellulose/TiO2 nanocomposites, J. Colloid Interface Sci. 519 (2018) 154–173.


    DOI: 10.1016/j.jcis.2018.02.059

    Google Scholar



    [7]
    C. Seto, B.P. Chang, C. Tzoganakis, T.H. Mekonnen, Lignin derived nano-biocarbon and its deposition on polyurethane foam for wastewater dye adsorption, Int. J. Biol. Macromol. 185 (2021) 629–643.


    DOI: 10.1016/j.ijbiomac.2021.06.185

    Google Scholar



    [8]
    L. Ren, Z. Tang, J. Du, L. Chen, T. Qiang, Recyclable polyurethane foam loaded with carboxymethyl chitosan for adsorption of methylene blue, J. Hazard. Mater. 417 (2021).


    DOI: 10.1016/j.jhazmat.2021.126130

    Google Scholar



    [9]
    Y. Huang, B. Yuan, Reduced graphene oxide/iron-based metal–organic framework nano-coating created on flexible polyurethane foam by layer-by-layer assembly: Enhanced smoke suppression and oil adsorption property, Mater. Lett. 298 (2021).


    DOI: 10.1016/j.matlet.2021.129974

    Google Scholar



    [10]
    S.A. Vali, M. Baghdadi, M.A. Abdoli, Immobilization of polyaniline nanoparticles on the polyurethane foam derived from waste materials: A porous reactive fixed-bed medium for removal of mercury from contaminated waters, J. Environ. Chem. Eng. 6 (2018) 6612–6622.


    DOI: 10.1016/j.jece.2018.09.042

    Google Scholar



    [11]
    M. Bhaumik, R. McCrindle, A. Maity, Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole-polyaniline nanofibres, Chem. Eng. J. 228 (2013) 506–515.


    DOI: 10.1016/j.cej.2013.05.026

    Google Scholar



    [12]
    V. Janaki, B.T. Oh, K. Shanthi, K.J. Lee, A.K. Ramasamy, S. Kamala-Kannan, Polyaniline/chitosan composite: An eco-friendly polymer for enhanced removal of dyes from aqueous solution, Synth. Met. 162 (2012) 974–980. https://doi.org/10.1016/j.synthmet. 2012.04.015.


    DOI: 10.1016/j.synthmet.2012.04.015

    Google Scholar



    [13]
    A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles, J. Hazard. Mater. 174 (2010) 398–403.


    DOI: 10.1016/j.jhazmat.2009.09.066

    Google Scholar



    [14]
    R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, 99 (2008) 2938–2946.


    DOI: 10.1016/j.biortech.2007.06.027

    Google Scholar



    [15]
    S.D. Ashrafi, G.H. Safari, K. Sharafi, H. Kamani, J. Jaafari, Adsorption of 4-Nitrophenol on calcium alginate-multiwall carbon nanotube beads: Modeling, kinetics, equilibriums and reusability studies, Int. J. Biol. Macromol. 185 (2021) 66–76. https://doi.org/10.1016/j.ijbiomac. 2021.06.081.


    DOI: 10.1016/j.ijbiomac.2021.06.081

    Google Scholar



    [16]
    S. Das, S. Mishra, Journal of Environmental Chemical Engineering Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima shell with desirability approach, Biochem. Pharmacol. 5 (2017) 588–600.


    DOI: 10.1016/j.jece.2016.12.034

    Google Scholar



    [17]
    K. Dash, N.K. Hota, B.P. Sahoo, biopolymers Fabrication of thermoplastic polyurethane and polyaniline conductive blend with improved mechanical , thermal and excellent dielectric properties?: exploring the effect of ultralow-level loading of SWCNT and temperature, J. Mater. Sci. 55 (2020) 12568–12591.


    DOI: 10.1007/s10853-020-04834-w

    Google Scholar



    [18]
    S. Wang, H. Gao, Y. Jin, X. Chen, F. Wang, H. Yang, L. Fang, X. Chen, S. Tang, D. Li, Defect engineering in novel broad-band gap hexaaluminate MAl 12 O 19 ( M ? Ca , sr , Ba ) -Based photocatalysts Boosts Near ultraviolet and visible light-driven photocatalytic performance, 24 (2022).


    DOI: 10.1016/j.mtchem.2022.100942

    Google Scholar



    [19]
    L.S. Mendieta-Rodríguez, L.M. González-Rodríguez, J.J. Alcaraz-Espinoza, A.E. Chávez-Guajardo, J.C. Medina-Llamas, Synthesis and characterization of a polyurethane-polyaniline macroporous foam material for methyl orange removal in aqueous media, Mater. Today Commun. 26 (2021).


    DOI: 10.1016/j.mtcomm.2021.102155

    Google Scholar



    [20]
    S. Wang, M. Li, H. Gao, Z. Yin, C. Chen, H. Yang, L. Fang, V. Jagadeesha Angadi, Z. Yi, D. Li, Construction of CeO2/YMnO3 and CeO2/MgAl2O4/YMnO3 photocatalysts and adsorption of dyes and photocatalytic oxidation of antibiotics: Performance prediction, degradation pathway and mechanism insight, Appl. Surf. Sci. 608 (2023). https://doi.org/10.1016/j.apsusc. 2022.154977.


    DOI: 10.1016/j.apsusc.2022.154977

    Google Scholar



    [21]
    M. Jharwal, S. Mittal, C. Frsc, M. Singla, Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydrogen peroxide Thermal and electrical behavior of silver chloride / polyaniline nanocomposite synthesized in aqueous medium using hydroge, (2013).


    DOI: 10.1007/s10854-012-0933-0

    Google Scholar



    [22]
    N.A. Rangel-vázquez, R. Salgado-delgado, E. García-hernández, A.M. Mendoza-martínez, Characterization of Copolymer Based in Polyurethane and Polyaniline ( PU / PANI ), (2015).


    DOI: 10.29356/jmcs.v53i4.979

    Google Scholar



    [23]
    K.M. Zia, I.A. Bhatti, M. Barikani, M. Zuber, M.A. Sheikh, XRD studies of chitin-based polyurethane elastomers, Int. J. Biol. Macromol. 43 (2008) 136–141. https://doi.org/.


    DOI: 10.1016/j.ijbiomac.2008.04.009

    Google Scholar



    [24]
    D. Paul, S. Paul, N. Roohpour, M. Wilks, P. Vadgama, Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane, J. Funct. Biomater. 4 (2013) 358–375.


    DOI: 10.3390/jfb4040358

    Google Scholar



    [25]
    P. Sirajudheen, S. Vigneshwaran, V.C.R. Kasim, M.C. Basheer, S. Meenakshi, International Journal of Biological Macromolecules Mechanistic view of MoS 2 confined chitosan-polyaniline hybrid composite for the photo-oxidation of cationic dyes, Int. J. Biol. Macromol. 249 (2023) 126008.


    DOI: 10.1016/j.ijbiomac.2023.126008

    Google Scholar



    [26]
    N.M.Y. Al-mahbashi, S.R.M. Kutty, A.H. Jagaba, A. Al-nini, A.T. Sholagberu, B.N.S. Aldhawi, U. Rathnayake, Sustainable sewage sludge biosorbent activated carbon for remediation of heavy metals: Optimization by response surface methodology, Case Stud. Chem. Environ. Eng. 8 (2023) 100437.


    DOI: 10.1016/j.cscee.2023.100437

    Google Scholar



    [27]
    T.R. Sarker, S. Nanda, A.K. Dalai, Parametric studies on hydrothermal gasification of biomass pellets using Box-Behnken experimental design to produce fuel gas and hydrochar, J. Clean. Prod. 388 (2023) 135804.


    DOI: 10.1016/j.jclepro.2022.135804

    Google Scholar



    [28]
    J. Prakash Maran, S. Manikandan, V. Mekala, Modeling and optimization of betalain extraction from Opuntia ficus-indica using Box-Behnken design with desirability function, Ind. Crops Prod. 49 (2013) 304–311.


    DOI: 10.1016/j.indcrop.2013.05.012

    Google Scholar



    [29]
    K. Vadakkan, R. Gunasekaran, A.A. Choudhury, A. Ravi, S. Arumugham, J. Hemapriya, S. Vijayanand, Response Surface Modelling through Box-Behnken approach to optimize bacterial quorum sensing inhibitory action of Tribulus terrestris root extract, Rhizosphere. 6 (2018) 134–140.


    DOI: 10.1016/j.rhisph.2018.06.005

    Google Scholar



    [30]
    S. Senthilkumaar, P.R. Varadarajan, K. Porkodi, C. V. Subbhuraam, Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies, J. Colloid Interface Sci. 284 (2005) 78–82.


    DOI: 10.1016/j.jcis.2004.09.027

    Google Scholar



    [31]
    T.A.O.K. Meetiyagoda, T. Takahashi, T. Fujino, Response surface optimization of chemical coagulation for solid–liquid separation of dairy manure slurry through Box–Behnken design with desirability function, Heliyon. 9 (2023) e17632. https://doi.org/10.1016/j.heliyon. 2023.e17632.


    DOI: 10.1016/j.heliyon.2023.e17632

    Google Scholar



    [32]
    R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, L. Zou, Use of rice husk for the adsorption of congo red from aqueous solution in column mode, Bioresour. Technol. 99 (2008) 2938–2946.


    DOI: 10.1016/j.biortech.2007.06.027

    Google Scholar



    [33]
    S. Ghorai, K.K. Pant, Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina, Sep. Purif. Technol. 42 (2005) 265–271. https://doi.org/10.1016/j.seppur. 2004.09.001.


    DOI: 10.1016/j.seppur.2004.09.001

    Google Scholar



    [34]
    H. Rashidi, P. Rasouli, H. Azimi, A green vapor suppressing agent for aqueous ammonia carbon dioxide capture solvent?: Microcontactor mass transfer study Sum of Squares, Energy. 244 (2022) 122711.


    DOI: 10.1016/j.energy.2021.122711

    Google Scholar



    [35]
    H. Luo, J. Jiang, Arramel, M. Li, K. Sun, Y. Zheng, Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries, J. Colloid Interface Sci. 654 (2024) 289–299.


    DOI: 10.1016/j.jcis.2023.10.029

    Google Scholar



    [36]
    F.D.S. Gorza, G.C. Pedro, J. Romário, J.C. Medina-llamas, J.J. Alcaraz-espinoza, A.E. Chávez-guajardo, C.P. De Melo, Journal of the Taiwan Institute of Chemical Engineers Electrospun polystyrene- ( emeraldine base ) mats as high-performance materials for dye removal from aqueous media, J. Taiwan Inst. Chem. Eng. 82 (2018) 300–311.


    DOI: 10.1016/j.jtice.2017.10.034

    Google Scholar



    [37]
    S. Zhai, R. Chen, J. Liu, J. Xu, H. Jiang, N-doped magnetic carbon aerogel for the efficient adsorption of Congo red, J. Taiwan Inst. Chem. Eng. 120 (2021) 161–168.


    DOI: 10.1016/j.jtice.2021.03.002

    Google Scholar



    [38]
    A. Jonderian, M. Ammar, H. El-Rassy, M. Al-Ghoul, Combined experimental and DFT study on the adsorption of congo red dye using self-assembled hierarchical microspheres of lanthanum hydroxide, Colloids Surfaces A Physicochem. Eng. Asp. 681 (2024) 132728.


    DOI: 10.1016/j.colsurfa.2023.132728

    Google Scholar



    [39]
    V. Subbaiah Munagapati, H.Y. Wen, A.R.K. Gollakota, J.C. Wen, C.M. Shu, K.Y. Andrew Lin, Z. Tian, J.H. Wen, G. Mallikarjuna Reddy, G. V. Zyryanov, Magnetic Fe3O4 nanoparticles loaded papaya (Carica papaya L.) seed powder as an effective and recyclable adsorbent material for the separation of anionic azo dye (Congo Red) from liquid phase: Evaluation of adsorption properties, J. Mol. Liq. 345 (2022) 118255.


    DOI: 10.1016/j.molliq.2021.118255

    Google Scholar



    [40]
    V.S. Munagapati, D.S. Kim, Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite, Ecotoxicol. Environ. Saf. 141 (2017) 226–234.


    DOI: 10.1016/j.ecoenv.2017.03.036

    Google Scholar



    [41]
    E.N. Seyahmazegi, R. Mohammad-Rezaei, H. Razmi, Multiwall carbon nanotubes decorated on calcined eggshell waste as a novel nano-sorbent: Application for anionic dye Congo red removal, Chem. Eng. Res. Des. 109 (2016) 824–834. https://doi.org/10.1016/j.cherd. 2016.04.001.


    DOI: 10.1016/j.cherd.2016.04.001

    Google Scholar
















    Cited by


















    Related Articles




















    Citation










    Added To Cart






    This paper has been added to your cart









    To Shop


    To Cart



















    For Libraries
    For Publication
    Insights
    Downloads
    About Us
    Policy & Ethics
    Contact Us
    Imprint
    Privacy Policy
    Sitemap
    All Conferences
    All Special Issues
    All News
    Read & Publish Agreements























    Scientific.Net is a registered brand of Trans Tech Publications Ltd
    © 2024 by Trans Tech Publications Ltd. All Rights Reserved

















  • 原文来源:https://www.scientific.net/JNanoR.83.33
相关报告
  • 《Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Development of Hydrophilic Self-Cleaning and... Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) Article Preview Abstract: The dust accumulation and dirt particles always degrade the transparency of glass, later hampers its various applications such as photovoltaic panels, building glass, and car-windshield. In this study, the hydrophilic self-cleaning coatings have been developed by using the nanocalcium Carbonate particles (nanoCaCO3) and hydrophilic micro-titanium dioxide particles (μ-TiO2). The presence of oxide groups, CO-3 and TiO2- forms a strong attraction of glass to polar water molecules. At the weight ratio of 1: 1 in the CaCO3 to TiO2 mixture, it forms a great hydrophilic property in which the water contact angle (WCA) of coated glass has been recorded as low as 11.46 ±0.85°. The coated glass also showed high transparency in UV and Visible regions. The optical transmission of coated glass was above 89% at the wavelength of 300-400nm and above 97% at the wavelength of 400-800nm. Due to its hydrophilic property, the coated glass is capable of removing the dust particles away via the water stream. The hydrophilic coating spontaneously forms the water-thin film after contact with coated glass without the presence of UV light. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 79-89 DOI: https://doi.org/10.4028/p-4HWb6k Citation: Cite this paper Online since: July 2024 Authors: Amirul Syafiq, Jamilatul Awalin Awalin, Mohd Syukri Ali, Mohd Arif Mohd Sarjidan, Nasrudin Abd Rahim, Adarsh Kumar Panday Keywords: Calcium Carbonate, Hydrophilic, Self-Cleaning, Titanium Dioxide, Transparency Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] A. Syafiq, V. Balakrishnan, M.S. Ali, S.J. Dhoble, N.A. Rahim, A. Omar, A.H.A. Bakar, Application of transparent self-cleaning coating for photovoltaic panel: A review, Curr. Opin. Chem. Eng. 36 (2022) 100801. DOI: 10.1016/j.coche.2022.100801 Google Scholar [2] Q.F. Xu, J.N. Wang, K.D. Sanderson, Organic?inorganic composite nanocoatings with superhydrophobicity, good transparency, and thermal stability, ACS Nano 4 (2010) 2201–2209. DOI: 10.1021/nn901581j Google Scholar [3] X. Wu, L. Zheng, D. Wu, Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route, Langmuir 21 (2005) 2665–2667. DOI: 10.1021/la050275y Google Scholar [4] H. Sen Wei, C.C. Kuo, C.C. Jaing, Y.C. Chang, C.C. Lee, Highly transparent superhydrophobic thin film with low refractive index prepared by one-step coating of modified silica nanoparticles, J. Sol-Gel. Sci. Technol. 71 (2014) 168–175. DOI: 10.1007/s10971-014-3349-x Google Scholar [5] N. Zhao, Q. Xie, L. Weng, S. Wang, X. Zhang, J. Xu, Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution, Macromolecules 38 (2005) 8996–8999. DOI: 10.1021/ma051560r Google Scholar [6] D. Ebert, B. Bhushan, Transparent, superhydrophobic, and wear-resistant coatings on glass and polymer substrates using SiO2, ZnO, and ITO nanoparticles, Langmuir 28 (2012) 11391–11399. DOI: 10.1021/la301479c Google Scholar [7] Y. Zheng, Y. He, Y. Qing, C. Hu, Q. Mo, Preparation of superhydrophobic coating using modified CaCO3, Appl. Surf. Sci. 265 (2013) 532–536. DOI: 10.1016/j.apsusc.2012.11.040 Google Scholar [8] E. Hosono, S. Fujihara, I. Honma, H. Zhou, superhydrophobic perpendicular nanopin film by the bottom-up process, J. Am. Chem. Soc. 127 (2005) 13458–13459. DOI: 10.1021/ja053745j Google Scholar [9] T. Bharathidasan, T.N. Narayanan, S. Sathyanaryanan, S.S. Sreejakumari, Above 170° water contact angle and oleophobicity of fluorinated graphene oxide based transparent polymeric films, Carbon 84 (2015) 207–213. DOI: 10.1016/j.carbon.2014.12.004 Google Scholar [10] L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu, S. Prawer, Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, J. Phys. Chem. B. 109 (2005) 7746–7748. DOI: 10.1021/jp046549s Google Scholar [11] I. Batool, N. Shahzad, R. Shahzad, A. Naseem Satti, R. Liaquat, A. Waqas, M. Imran Shahzad, Self-cleaning study of SiO2 modified TiO2 nanofibrous thin films prepared via electrospinning for application in solar cells, Sol. Energy. 268 (2024) 112271. DOI: 10.1016/j.solener.2023.112271 Google Scholar [12] T. Zimmermann, C. Stauch, L. Bittel, N. Jüngling, M. Muhamettursun, M. Halik, J. Niessner, S. Wintzheimer, A. Lyons, P. L?bmann, K. Mandel, Sol-gel coatings for solar cover glass: Influence of surface structure on dust accumulation and removal, Sol. Energy. 267 (2024) 112246. DOI: 10.1016/j.solener.2023.112246 Google Scholar [13] M. Yang, G. Liu, W. Zhao, F. Meng, Y. Lao, Y. Liang, Preparation and properties of TiO2 photocatalytic self—cleaning coating material for glass, Int. J. Low-Carbon Technol. 18 (2023) 322–330. DOI: 10.1093/ijlct/ctad015 Google Scholar [14] Y. Kezuka, Y. Kuma, S. Nakai, K. Matsubara, M. Tajika, Calcium carbonate chain-like nanoparticles: Synthesis, structural characterization, and dewaterability, Powder Technol. 335 (2018) 195–203. DOI: 10.1016/j.powtec.2018.05.011 Google Scholar [15] S. Sun, H. Ding, X. Hou, D. Chen, S. Yu, H. Zhou, Y. Chen, Effects of organic modifiers on the properties of TiO2-coated CaCO3 composite pigments prepared by the hydrophobic aggregation of particles, Appl. Surf. Sci. 456 (2018) 923–931. DOI: 10.1016/j.apsusc.2018.06.185 Google Scholar [16] H. Zhang, X. Zeng, Y. Gao, F. Shi, P. Zhang, J.-F. Chen, A facile method to prepare superhydrophobic coatings by calcium carbonate, Ind. Eng. Chem. Res. 50 (2011) 3089–3094. DOI: 10.1021/ie102149y Google Scholar [17] M. Kuppusamy, S.-W. Kim, K.-P. Lee, Y.J. Jo, W.-J. Kim, Development of TiO2–CaCO3 based composites as an affordable building material for the photocatalytic abatement of hazardous NOx from the environment, Nanomaterials. 14 (2024) 136. DOI: 10.3390/nano14020136 Google Scholar [18] S. Sun, H. Ding, X. Hou, Preparation of CaCO3-TiO2 composite particles and their pigment properties, Materials 11 (2018) 1131. DOI: 10.3390/ma11071131 Google Scholar [19] T. Druffel, O. Buazza, M. Lattis, S. Farmer, M. Spencer, N. Mandzy, E.A. Grulke, The role of nanoparticles in visible transparent nanocomposites, Proc. SPIE - Int. Soc. Opt. Eng. (2008) 70300F. DOI: 10.1117/12.795273 Google Scholar [20] A. Syafiq, A.K. Pandey, N.A. Rahim, B. Vengadaesvaran, S. Shahabuddin, Self-cleaning and weather resistance of nano-SnO2/modified silicone oil coating for photovoltaic (PV) glass applications, J. Mater. Sci.: Mater. Electron. 30 (2019) 12584–12596. DOI: 10.1007/s10854-019-01619-z Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved
  • 《Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures》

    • 来源专题:现代化工
    • 编译者:武春亮
    • 发布时间:2024-07-25
    • Registration Log In For Libraries For Publication Downloads News About Us Contact Us For Libraries For Publication Downloads News About Us Contact Us Search Paper Titles Construction of Ternary Heterostructured NaNbO3/Bi2S3/ Ag Nanorods with Synergistic Pyroelectric and Photocatalytic Effects for Enhanced Catalytic Performance p.1 Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants p.17 Continuous Remediation of Congo Red Dye Using Polyurethane-Polyaniline Nano-Composite Foam: Experiment and Optimization Study p.33 Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures p.49 Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect p.65 Development of Hydrophilic Self-Cleaning and Ultraviolet-Shielding Coatings Incorporating Micro-Titanium Dioxide/Nano-Calcium Carbonate (μ-TiO2)/(Nano-CaCO3) p.79 Production of Cu/Zn Nanoparticles by Pulsed Laser Ablation in Liquids and Sintered Cu/Zn Alloy p.91 HomeJournal of Nano ResearchJournal of Nano Research Vol. 83Quantization Conductance of InSb Quantum-Well... Quantization Conductance of InSb Quantum-Well Two-Dimensional Electron Gas Using Novel Spilt Gate Structures Article Preview Abstract: Electron transport behaviour in InSb semiconductor significantly changes when the conduction is restricted to two-dimensions. Semiconductor materials are an effective tools to characterize the electron transport in this aspect because the energy separation between transverse modes in a low-dimensional semiconductor device are always inversely proportional to the effective mass, in the same way as for sub-bands in a parabolic potential. Therefore, in this article, a range of novel device geometries were designed, fabricated and characterized to investigate ballistic transport of electrons in low-dimensional InSb structures using surface gated devices to restrict the degrees of freedom (dimensionality) of the active conducting channel. In this framework, designs of gates (i.e., line, loop and solid discussed later) have been used over a range of gate dimensions. Consistent measurement of quantised conductance would be promising for both low power electronics and low temperature transport physics where split gates are typically used for charge sensing. This article presents an experimental results of quantization conductance obtained for the range geometries of novel gates, and some model consideration of the implications of the material choice. Furthermore, the etching techniques (wet and dry) exhibited a significant decrease of ohmic contact resistance from around 35kΩ to only roughly 250Ω at room temperature. Interestingly a possible 0.7 anomaly conduction was observed with a loop gate structure. This work showed perfectly that the two-dimensional electron gases can be formed in narrow gap InSb QWs which makes this configuration device promising candidate for topological quantum computing and next generation integrated circuit applications. Keywords: Quantization conductance, InSb QW, 2DEG, spilt gate structure, ballistic transport. Access through your institution Add to Cart You might also be interested in these eBooks View Preview Info: Periodical: Journal of Nano Research (Volume 83) Pages: 49-63 DOI: https://doi.org/10.4028/p-PLC4fu Citation: Cite this paper Online since: July 2024 Authors: Shawkat Ismael Jubair, Asheraf Eldieb, Ghassan Salem, Ivan Bahnam Karomi, Phil Buckle Keywords: 2 Dimensional Electron Gas (2DEG), Ballistic Transport, InSb Qw, Quantization Conductance, Spilt Gate Structure Export: RIS, BibTeX Price: Permissions: Request Permissions Share: - Corresponding Author References [1] K. Delfanazari, J. Li, Y. Xiong, P. Ma, R. K. Puddy, T. Yi, I. Farrer , S. Komori, J. W.A. Robinson, L. Serra, D.A. Ritchie, M. J. Kelly, H. J. Joyce , and C. G. Smith, Quantized conductance in hybrid split-gate arrays of superconducting quantum point contacts with semiconducting two-dimensional electron systems, Phys. Rev. Appl. 21 1 (2024) 1. DOI: 10.1103/physrevapplied.21.014051 Google Scholar [2] J. Yan, Y. Wu, S. Yuan, X. Liu, L. N. Pfeiffer, K. W. West, Y. Liu, H. Fu, X. C. Xie, and X. Lin, Anomalous quantized plateaus in two-dimensional electron gas with gate confinement, Nat. Commun. 14. 1 (2023). DOI: 10.1038/s41467-023-37495-9 Google Scholar [3] Z. Lei , E. Cheah, K. Rubi , M. E. Bal, C. Adam, R. Schott , U. Zeitler, W. Wegscheider, T. Ihn, and K. Ensslin., High-quality two-dimensional electron gas in undoped InSb quantum wells, Phys. Rev. Res. 4, 1 (2022) 1–9. DOI: 10.1103/physrevresearch.4.013039 Google Scholar [4] S. Heedt, M. Quintero-Pérez, F. Borsoi, A. Fursina, N. v. Loo, G. P. Mazur, M. P. Nowak, M. Ammerlaan, K. Li, S. Korneychuk, J. Shen, M. A. Y. van de Poll, G. Badawy, S. Gazibegovic, N. de Jong, P. Aseev, K. v. Hoogdalem, E. P. A. M. Bakkers, and L. P. Kouwenhoven, Shadow-wall lithography of ballistic superconductor–semiconductor quantum devices, Nat. Commun. 12, 1 (2021) 1–9. DOI: 10.1038/s41467-021-25100-w Google Scholar [5] E.J. Koop, A. I. Lerescu, J. Liu, B. J. van Wees, D. Reuter, A. D. Wieck, C.H. van der Wal, The influence of device geometry on many-body effects in quantum point contacts: Signatures of the 0.7 anomaly, exchange and Kondo, J. Supercond. Nov. Magn., 20, 6 (2007) 433–441. DOI: 10.1007/s10948-007-0289-5 Google Scholar [6] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F. Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C Solid State Phys., 21, 8 (1988) L209–L214. DOI: 10.1088/0022-3719/21/8/002 Google Scholar [7] A. David and B. Miller, Optical physics of quantum wells. 2020. Google Scholar [8] U. I. Erkaboev, R. G. Rakhimov, J. I. Mirzaev, U. M. Negmatov, and N. A. Sayidov, Influence of a magnetic field and temperature on the oscillations of the combined density of states in two-dimensional semiconductor materials, Indian J. Phys., 98, 1 (2024) 189–197. DOI: 10.1007/s12648-023-02803-y Google Scholar [9] D. K. Ferry, S. M. Goodnick, and Jonathan Bird, Transport in Nanostructures, second Edi. Cambridge University Press, 2009. Google Scholar [10] Y.V Nazarov and Y.M. Blanter, Quantum Transport. Introduction to Nanoscience. Cambridge University Press, 2009. Google Scholar [11] C.W.J. Beenakker and H. van Houten, Quantum Transport in Semiconductor Nanostructures, Solid State Phys. - Adv. Res. Appl., 44, C (1991) 1–111. DOI: 10.1016/s0081-1947(08)60091-0 Google Scholar [12] G. Milano, M. Aono, L. Boarino, U. Celano, T. Hasegawa, M. Kozicki, S. Majumdar, M. Menghini, E. Miranda, C. Ricciardi, S. Tappertzhofen, K. Terabe, and I. Valov, Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications, Adv. Mater., 34, 32 (2022). DOI: 10.1002/adma.202270235 Google Scholar [13] K. Kawabata and M. Ueda, Nonlinear Landauer formula: Nonlinear response theory of disordered and topological materials, Phys. Rev. B, 106, 20 (2022) 1–39. DOI: 10.1103/physrevb.106.205104 Google Scholar [14] M.S. Al-Ghamdi, R.Z. Bahnam, and I.B. Karomi, Study and analysis of the optical absorption cross section and energy states broadenings in quantum dot lasers, Heliyon, 8, 9 (2022) e10587. DOI: 10.1016/j.heliyon.2022.e10587 Google Scholar [15] R. Joko Hussin and I. B. Karomi, Ultrashort cavity length effects on the performance of GaInP multiple-quantum-well laser diode, Results Opt., 12 (2023) 100452. DOI: 10.1016/j.rio.2023.100452 Google Scholar [16] U. W. Pohl, Epitaxy of Semiconductors Physics and Fabrication of Heterostructures, second ed. Springer Nature Switzerland, 2020. Google Scholar [17] T. Lill, Atomic Layer Processing Semiconductor Dry Etching Technology. WILEY-VCH GmbH, Boschstr, 2021. Google Scholar [18] D. Bimberg, Semiconductor Nanostructure. Springer-Verlag Berlin Heidelberg, 2008. Google Scholar [19] I. ?uti?, J. Fabian, and S. Das Sarma, Spintronics Fundamentals and applications, Rev. Mod. Phys., 76, 2 (2004) 323–410. DOI: 10.1103/revmodphys.76.323 Google Scholar [20] K. Shriram, R. R. Awasthi, and B. Das, Composition dependent structural, electrical, and optical properties of p-type InSb thin film for homojunction device application, Dig. J. Nanomater. Biostructures, 19, 1 (2024) 229–241. DOI: 10.15251/djnb.2024.191.229 Google Scholar [21] G. Hussain, G. Cuono, R. Islam, and A. Trajnerowicz, InAs / InAs 0.625 Sb 0.375 superlattices and their application for far-infrared, J. Phys. D. Appl. Phys., 22 (2022) 0–10. DOI: 10.1088/1361-6463/ac984d Google Scholar [22] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys, J. Appl. Phys., 89, 11 (2001) 5815–5875. DOI: 10.1063/1.1368156 Google Scholar [23] H. Tang, A. R. Barr, G. Wang, P. Cappellaro, and J. Li, First-Principles Calculation of the Temperature-Dependent Transition Energies in Spin Defects, J. Phys. Chem. Lett., 14, 13 (2023) 3266–3273. DOI: 10.1021/acs.jpclett.3c00314 Google Scholar [24] C. A. Lehner, T. Tschirky, T. Ihn, W. Dietsche, J. Keller, S. F?lt, and W. Wegscheider, Limiting scattering processes in high-mobility InSb quantum wells grown on GaSb buffer systems, Phys. Rev. Mater. 2, 2, 054601 (2018) 1–12. DOI: 10.1103/physrevmaterials.2.054601 Google Scholar [25] W. Yi, A. A. Kiselev, J. Thorp, R. Noah, B. M. Nguyen, S. Bui, R. D. Rajavel, T. Hussain, M. F. Gyure, P. Kratz, Q. Qian, M. J. Manfra, V. S. Pribiag, L. P. Kouwenhoven, C. M. Marcus, and M. Sokolich, Gate-tunable high mobility remote-doped InSb/In1?xAlxSb quantum well heterostructures, Appl. Phys. Lett., 106, 14 (2015) 142103. DOI: 10.1063/1.4917027 Google Scholar [26] F. Qu, J. v. Veen, F. K. de Vries, A. J. A. Beukman, M. Wimmer, W. Yi, A. A. Kiselev, B. M. Nguyen, M. Sokolich, M. J. Manfra, F. Nichele, C. M. Marcus, and L. P. Kouwenhoven, Quantized Conductance and Large g-Factor Anisotropy in InSb Quantum Point Contacts, Nano Letters, 16, 12 (2016) 7509–7513. DOI: 10.1021/acs.nanolett.6b03297 Google Scholar [27] Z. Lei , E. Cheah, F. Krizek, R. Schott, T. B?hler, P. M?rki, W. Wegscheider, M. Shayegan, T. Ihn, and K. Ensslin, Gate-defined two-dimensional hole and electron systems in an undoped InSb quantum well, Phys. Rev. Res., 5, 1 (2023) 13117. DOI: 10.1103/physrevresearch.5.013117 Google Scholar [28] S. I. Jubair, Influence of Dry and Wet Etching on AlInSb Contact Resistivity, Transfer Length , and Sheet Resistance Using Circular Transmission Model, J. Electron. Mater., 52 (2023) 2718–2721. DOI: 10.1007/s11664-023-10234-y Google Scholar [29] M. D. Feuer, Two-Layer Model for Source Resistance in Selectively Doped Heterojunction Transistors, IEEE Trans. Electron Devices, 32, 1 (1985) 7–11. DOI: 10.1109/t-ed.1985.21901 Google Scholar [30] K. J. Thomas, J. T. Nicholls, N. J. Appleyard, M. Y.Simmons, M. Pepper, D. R. Mace, W. R. Tribe, and D. A. Ritchie, Interaction effects in a one-dimensional constriction, Phys. Rev. B - Condens. Matter Mater. Phys., 58, 8 (1998) 4846–4852. DOI: 10.1103/physrevb.58.4846 Google Scholar [31] S. M. Cronenwett, H. J. Lynch, D. Goldhaber-Gordon, L. P. Kouwenhoven, C. M. Marcus, K. Hirose, N. S. Wingreen, and V. Umansky, Low-temperature fate of the 0.7 structure in a point contact: A Kondo-like correlated state in an open system, Phys. Rev. Lett., 88, 22 (2002). DOI: 10.1103/physrevlett.88.226805 Google Scholar [32] L. W. Smith, A. A. J. Lesage, K. J. Thomas, F. Sfigakis, P. See, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith, Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure, 044015, (2016) 1–10. DOI: 10.1103/physrevapplied.5.044015 Google Scholar [33] S. T. Herbert, M. Muhammad, and M. Johnson, All-electric quantum point contact spin-polarizer, Nat. Nanotechnol., 4, November (2009) 759–764. Google Scholar [34] M. Reed, Nanostructured Systems, Semeconductors and semimetals, New York: Academic press limited, 1992. Google Scholar [35] S. P. Zimin, E. S. Gorlachev, I. I. Amirov, M. N. Gerke, H. Zogg, and D Zimin, Role of threading dislocations during treatment of PbTe films in argon plasma, Semicond. Sci. Technol, 22 (2007) 929–932. DOI: 10.1088/0268-1242/22/8/018 Google Scholar [36] Y. Zhang, M. Sun, H. Wong, Y. Lin, P. Srivastava, C. Hatem, M. Azize, D. Piedra, and L. Yu, Origin and Control of OFF -State Leakage Current in GaN-on-Si Vertical Diodes, IEEE Trans. Electron Devices, 62, 7 (2015) 2155–2161. DOI: 10.1109/ted.2015.2426711 Google Scholar [37] Z. H. Feng, S. Member, S. J. Cai, K. J. Chen, and K. M. Lau, Enhanced-Performance of AlGaN–GaN HEMTs Grown on Grooved Sapphire Substrates, IEEE ELECTRON DEVICE Lett., 26, 12 (2005) 870–872. DOI: 10.1109/led.2005.859675 Google Scholar [38] A. Hofer, G. Benstetter, R. Biberger, C. Leirer, and G. Brüderl, Analysis of crystal defects on GaN-based semiconductors with advanced scanning probe microscope techniques, Thin Solid Films, 544 (2013) 139–143. DOI: 10.1016/j.tsf.2013.04.049 Google Scholar [39] F. Giannazzo, F. Roccaforte, F. Iucolano, V. Raineri, F. Ruffino, and M. G. Grimaldi, Nanoscale current transport through Schottky contacts on wide bandgap semiconductors, J. Vac. Sci. Technol., 27, 2 (2009) 789–793. DOI: 10.1116/1.3043453 Google Scholar [40] D. G. Hayes, C. P. Allford, G. V. Smith, C. McIndo, L. A. Hanks, A. M. Gilbertson, L. F. Cohen, S. Zhang, E. M. Clarke, P. D. Buckle, Electron transport lifetimes in InSb/Al1-xInxSb quantum well 2DEGs, Semicond. Sci. Technol., 32 (2017) 1–8. DOI: 10.1088/1361-6641/aa75c8 Google Scholar [41] C. Couso, V. Iglesias, M. Porti, S. Claramunt, M. Nafría, N. Domingo, A. Cordes, G. Bersuker, Conductance of Threading Dislocations in InGaAs / Si Stacks by Temperature-CAFM Measurements, IEEE ELECTRON DEVICE Lett., 37, 5 (2016) 640–643. DOI: 10.1109/led.2016.2537051 Google Scholar [42] M. Grundmann, The Physics of Semiconductors: An Introduction Including Nanophysics and Applications, second ed. Springer, 2010. Google Scholar [43] G. Christopher J. McIndoa, David G. Hayesa, Andreas Papageorgioua, Laura A. Hanksa and P. D. B. V. Smitha, Craig P. Allforda, Shiyong Zhangb, Edmund M. Clarkeb, Determination of the transport lifetime limiting scattering rate in InSb-AlxIn1?xSb quantum wells using optical surface microscopy, Phys. E, 91 (2017) 169–172. Google Scholar [44] J. A. Nixon, J. H. Davies, and H. U. Baranger, Breakdown of quantized conductance in point contacts calculated using realistic potentials, Phys. Rev. B, 43, 15 (1990) 638–641. DOI: 10.1103/physrevb.43.12638 Google Scholar [45] J. C. Chen, Y. Lin, K. T. Lin, T. Ueda, and S. Komiyama, Effects of impurity scattering on the quantized conductance of a quasi-one-dimensional quantum wire, Appl. Phys. Lett., 94, 012105 (2009) 1–3. DOI: 10.1063/1.3067995 Google Scholar [46] A. Bose, Effect of Phonons and Impurities on the Quantum Transport in XXZ Spin-Chains, 2022. Google Scholar [47] G. R. Nash, S. J. Bending, P. D. Buckle, D. P. Morgan, T. M. Burke, and T. Ashley, Characterization of a two-dimensional electron gas in an InSb/InAlSb heterostructure using surface acoustic, Semicond. Sci. Technol, 17 (2002) 1111–1114. DOI: 10.1088/0268-1242/17/10/314 Google Scholar [48] J.M.S. Orr, A.M. Gilbertson, M. Fearn, O.W. Croad, C. J. Storey, L. Buckle, M.T. Emeny, P.D. Buckle, and T. Ashley, Electronic transport in modulation-doped InSb quantum well heterostructures, Phys. Rev. B, 77, 165334 (2008) 1–7. DOI: 10.1103/physrevb.77.165334 Google Scholar [49] P. P. Das, N. K. Bhandari, J. Wan, J. Charles, M. Cahay, K. B. Chetry, R. S. Newrock, and S. T. Herbert, Influence of surface scattering on the anomalous conductance plateaus in an asymmetrically biased InAs/In0.52Al0.48As quantum point contact, Nanotechnology, 23, 215201 (2012) 1–9. DOI: 10.1088/0957-4484/23/21/215201 Google Scholar [50] I.S. Arafat and N.B. Balamurugan, Influence of Scattering in Near Ballistic Silicon NanoWire Metal-Oxide-Semiconductor Field Effect Transistor, J. Nanosci. Nanotechnol., 16, 6 (2016) 6032–6036. DOI: 10.1166/jnn.2016.12142 Google Scholar [51] R. Chaghi, C. Cervera, H. A?t-Kaci, P. Grech, J.B. Rodriguez, and P. Christol, Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes, Semicond. Sci. Technol., 24 (2009) 1–6. DOI: 10.1088/0268-1242/24/6/065010 Google Scholar Cited by Related Articles Citation Added To Cart This paper has been added to your cart To Shop To Cart For Libraries For Publication Insights Downloads About Us Policy & Ethics Contact Us Imprint Privacy Policy Sitemap All Conferences All Special Issues All News Read & Publish Agreements Scientific.Net is a registered brand of Trans Tech Publications Ltd © 2024 by Trans Tech Publications Ltd. All Rights Reserved