《崔屹最新science:玩转冷冻电镜——揭密电池材料和界面原子结构》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2017-11-02
  • 【背景介绍】

    冷冻电镜(Cryo-EM),是用于扫描电镜的超低温冷冻制样及传输技术。可实现直接观察液体、半液体及对电子束敏感的样品,如生物、高分子材料等。样品经过超低温冷冻、断裂、镀膜制样(喷金/喷碳)等处理后,通过冷冻传输系统放入电镜内的冷台(温度可至-185℃)即可进行观察。其中,快速冷冻技术可使水在低温状态下呈玻璃态,减少枝晶的产生,从而不影响样品本身结构,冷冻传输系统保证在低温状态下对样品进行电镜观察。比较经典的锂离子电池由负极(阳极),正极(阴极),聚合物隔板和有机液体电解质构成。虽然实际中每个电池组件都是宏观的,但很多时候需要在微观,纳米和原子尺度上研究,以探索电池的更多性能。透射电子显微镜(TEM)虽然可用于研究电池材料,但成像仅限于在电子束下具有稳定性的样品。而且透射电子显微镜研究在操作后不能保持光束敏感性电池材料的原始状态,这种材料只有在低温条件下才会保持原始状态。

    【成果简介】

    北京时间2017年10月27日,Science在线发表了美国斯坦福大学崔屹(通讯作者)团队题为“Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy”的文章,继冷冻电镜获得诺贝尔奖后,应用冷冻电镜的又一力作。理论上,可以在原子尺度上将单个锂金属原子及其界面分解。崔屹团队实现了利用冷冻电镜观测电池材料和界面原子结构,观察到碳酸盐基电解质中的枝晶沿着<111>(优先),<110>或<211>方向生长为单晶纳米线。这些生长方向可能会发生变化,但没有观察到晶体缺陷。 此外,团队还揭示了在不同电解质中形成的不同的SEI纳米结构。这项工作提供了一种简单的方法在原子尺度上保留和成像光束敏感性电池材料的原始状态,揭示其详细的纳米结构。从这些实验中观察到的相关数据可以实现对电池故障机理的完整了解。尽管此工作以Li金属为例来证明cryo-EM的实用性,但是这种方法也可能会扩展到涉及光束敏感材料(如锂化硅或硫)的其他研究。

    文献链接:Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy(Science,2017,DOI: 10.1126/science.aam6014)

相关报告
  • 《盘点2017 | 神器——冷冻电镜“乱入”材料圈?》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-04
    • 说起冷冻电镜,小编想不管是研究生还是教授大咖,可能和科研有那么一丁点联系的人对这个名字都不会陌生,因为它实在太出名了!基于冷冻电镜产出的科研成果很多都发表在Nature、Science、Cell等顶刊上(羡慕脸),堪称NSC神器。冷冻电镜技术的发展直接带动了生命科学领域,特别是结构生物学的飞速发展,今年更是不负众望(欺负我大化学)一举拿下了“炸药”化学奖!不过,这些都不重要,毕竟他是隔壁生物家的孩子,以路人甲的姿态(羡慕但是我不表现出来)看看就好,反正也用不上!没想到一个晴朗的日子,还有些风和日丽的,Stanford的崔大神(崔屹)硬生生把它拽进了我大材料圈,而且一鸣惊人,搞了篇Science!(就问你服不服)听到这个消息,小编不禁陷入了深深的沉思,都是做材料的,怎么差别就这么大呢?(隔壁桌小林:人家是大牛!年轻的大牛!你,呵呵~)然而,短暂的沉思之后,小编知耻而后勇,决定好好看看这个“乱入”我材料圈的隔壁生物家的孩子,万一大老板某天心血来潮也弄了一台放实验室了(大老板:我就呵呵不说话),那小编岂不是有大大的优势,机智如我!独机智不如众机智,所以下面,小编带大家共同了解一下这把生物圈的屠龙宝刀——冷冻电镜! 1. 什么是冷冻电镜? 冷冻电镜,全称冷冻电子显微镜技术(Cryo-electron microscopy, Cryo-EM)(我大材料的小伙伴也快好好记住这个单词,相信不就的将来就会成为检索材料学文献的热门关键词),是指将生物大分子快速冷冻后,在低温环境下利用透射电子显微镜对样品进行成像,再经图像处理和重构计算获得样品三维结构的方法[1]。图1就是中国科学院生物物理研究所的FEI Titan Krios 300kV冷冻电镜,据说单台应该在600万美元以上。经过30多年的发展,冷冻电镜甚至超越了X射线晶体学、核磁共振(NMR)支撑起了高分辨率结构生物学研究的基础。 图1 FEI Titan Kiros 300kV 冷冻电镜实物图 那么为什么需要冷冻电镜技术?众所周知,X射线晶体学是解析结构的经典方法,然而它需要获得生物样品单晶,生物大分子的晶体生长却十分困难;而与此同时,材料学研究中早已使用电镜直接观察到了原子像[2](作为一名材料汪,TEM、SEM的重要性我想无需赘言),于是生物学家也想用电镜给生物大分子拍一张高清照片,解析其结构,以理解其生化反应机制,然而事情没有那么简单,电子显微镜在生物领域的应用受到了严重限制:(1)生物样品含有丰富的水,而透射电镜的工作条件是高度真空的;(2)高能电子束会严重破坏生物样品;(3)生物样品主要是C、O、N、H等轻元素,对电子的反射和散射与背景相似,获得图像衬度很低;(4)蛋白质分子会漂移,导致图像模糊。经过众多科学家的长期努力,不断克服种种困难,冷冻电镜技术终于发展了起来,实现了溶液里生物分子高分辨率的结构解析,使得生物化学进入了一个新时代,其中3位有开创性贡献的科学家因此荣膺2017年诺贝尔化学奖。他们分别是:瑞士洛桑大学Jacques Dubochet教授、美国哥伦比亚大学Joachim Frank教授和英国剑桥大学Richard Henderson教授。冷冻电镜技术给出的生物大分子高清照相的方案是[1]:样品冷冻→低剂量电子冷冻成像→三维重构。 图2 获得2017年诺贝尔化学奖的3位科学家 (1)样品冷冻 样品冷冻其实是科学家们很早就想到的思路,但是冷冻之后样品中水分子形成冰晶,不仅产生强烈电子衍射掩盖样品信号,还会改变样品结构。直到1974年,Kenneth A. Taylor和Robert M. Glaeser在-120℃观察含水生物样品时未发现冰晶形成,而且发现冷冻样品能够耐受更大剂量和更长时间的电子辐照,才为样品冷冻带来转机。而上面提到的Jacques Dubochet老爷子则更进一步,发现了水的玻璃态,成功解决了冷冻电镜制样问题,如图3 (a)所示[1]。 图3 冷冻电镜样品制备(a)和三维重构(b)示意图 (2)低剂量电子冷冻成像 材料汪都知道一般做TEM、SEM的时候,样品导电性越好,电子剂量越高,成像质量越好。然而,高剂量电子对生物大分子却是毁灭性的,因此Richard Henderson教授提出在低温下用尽量低的电子剂量成像。他与其合作者先后在1975年和1990年重构出了粗糙的(7Å)和高分辨率(3.5Å)的细菌视紫红质蛋白的模型,如图4所示,证明了冷冻电镜用于生物大分子高分辨率结构解析的可行性。然而,这个历时15年的进步与早在1984年就获得膜蛋白3.0 Å分辨率原子模型的Hartmut Michel等人(1988年诺贝尔化学奖获得者)相比似乎仍显逊色。尽管情况不容乐观,但是Henderson教授仍不断从理论上指导冷冻电镜技术的发展并预言:随着电镜技术和制样水平的发展,冷冻电镜必将成为疑难样品和非结晶生物大分子结构解析的有力工具。 图4 细菌视紫红质蛋白的3D结构模型 (3)三维重构 做过TEM的小伙伴都知道,透射电镜得到的是二维投影图像,要得到三维的结构,就要通过一系列建模、变换,这个过程就是三维重构。上面提到的第3位诺奖得主Joachim Frank就是和他的合作者建立了非对称颗粒从二维投影到三维结构的方法(随机圆锥倾斜法),奠定了冷冻电镜单颗粒三维重构的基本原理,如图3(b)所示[3, 4]。随后,开发了SPIDER程序用于冷冻电镜结构分析,得到了广泛应用。目前,冷冻电镜领域广泛应用的三维重构软件是上面剑桥大学Richard Henderson老爷子实验室的Sjors Scheres博士(据说当时Sjors Scheres博士没有一篇NSC论文,但Richard Henderson教授仍独具慧眼将其引进到剑桥MRC分子生物学实验室)开发的RELLION。 然而,即便打通了任督二脉(上述3个关键流程),冷冻电镜并没有立即获得今天这样的爆红。这主要是因为(1)冷冻电镜的信噪比低,(2)图像摄取时漂移,使得可以获取的二维投影仍是模糊状态,因此仅能应用于有限的生物大分子单颗粒的结构解析,严重限制了其应用。直到2013年,加州大学旧金山分校(UCSF)的程亦凡教授等将直接电子探测器(DDD)用于记录冷冻电镜的单颗粒图像,大大提高了信噪比与分辨率,实现了近原子分辨率(3.3 Å)的膜蛋白结构的解析,才引起了业界的轰动,如图5所示。随后,冷冻电镜技术在生物大分子3D结构解析中无往不利,堪称屠龙宝刀。目前,美国NIH的Subramaniam实验室成功解析了谷氨酸脱氢酶的结构,分辨率达到了1.8 Å,创造了最高分辨率的世界纪录。 图5 直接电子探测器应用前后的分辨率对比 可见,正是3位诺奖科学家在各自领域内完成突破性的工作:Jacques Dubochet突破了冷冻技术的瓶颈,Joachim Frank在三维重构算法上做出了原创性贡献,Richard Henderson首次使用低电子剂量成像完成了生物大分子3D结构的解析并一直在理论上指导冷冻电镜技术的发展,最终形成了0到1的飞跃,铸造了冷冻电镜这一把屠龙宝刀,开创了结构生物学研究的新局面。上述3位科学家获得诺贝尔奖章可以说当之无愧! 2. 冷冻电镜在结构生物学中的战绩 从NSC等顶刊的发文情况及源源不断的生物大分子结构被解析出来,冷冻电镜在结构生物学领域取得的巨大成功无需赘述。单单以中国大陆为例,基于冷冻电镜技术在结构生物学领域取得的重大进展就十分可观,具体如表1所示[5](2016年)。而随着冷冻电镜技术的大热,国内的许多高校、科研院所纷纷花重金购进冷冻电镜设备,已经有超过24家独立实验室在采用冷冻电镜进行蛋白质等生物大分子的3D结构解析研究,如图6所示[5]。 表1 2016年中国大陆基于冷冻电镜取得的标志性成果 图6 国内主要的冷冻电镜分布图 3. 冷冻电镜在材料科学中崭露头角 小编没有查到在崔屹教授之前将冷冻电镜技术应用到材料科学领域的报道,但是不管有没有,以Stanford的崔屹教授2017年10月27日在线发表在Science这篇题为“Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy”的研究论文 [6]作为冷冻电镜在材料学研究中的一个开端,小编认为是合适的,毕竟它是“他山之石,可以攻玉”的一个典范,可以说开启了材料科学研究的一个新世界。 做锂电的小伙伴都知道,锂枝晶是锂电中最大的安全隐患,Samsung、Apple产品时不时出现的自燃事故和它不无关系。时至今日,枝晶的产生、生长以及刺穿隔膜造成电池内部短路,都是电池专家们不得不直面的问题,也是材料领域“持续高温”的研究方向。然而,众所周知,锂元素非常活泼,对环境极其敏感,如何从原子层面去研究锂枝晶的形成和生长,极具挑战。传统的高分辨TEM电子束能量很高,会严重损坏枝晶结构甚至熔毁;而低分辨的TEM、直接成像、表面探针等技术获得的信息又十分有限。在这篇Science论文中,崔屹教授等受“冷冻电镜可以获得脆弱的生物大分子原子级别结构”的启发,创造性地将冷冻电镜技术引入到了敏感性电池材料和界面精细结构的研究中,克服了电池材料冷冻制样的种种难题,首次获得了锂枝晶原子分辨率级别的结构图像。结果显示,冷冻电镜技术完整地保留了枝晶的原始形貌及相关结构、化学信息,在持续10min的电子束轰击下仍然保持完好。高分辨的Cryo-EM照片表明锂枝晶是呈长条状的完美六面晶体,完全迥异于传统电镜观察到的不规则形状;而其生长行为显示其有明显的<111>优先取向,生长过程中可能发生“拐弯”,但是并没有形成晶体缺陷,不影响其完美晶体结构。另外,研究结果还包含固态电解质界面(SEI)的组成与结构。崔屹教授表示,研究结果十分令人兴奋,证明了Cryo-EM可以有效地对那些脆弱、不稳定的电池材料进行高分辨率表征,例如锂硅、硫等,并且保持它们在真实电池中的原始状态。 图7 通过Cryo-EM保存和稳定锂金属 小编在查阅文献过程中,也发现了另一篇采用Cryo-EM研究锂电池的论文“New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM”,由美国加州大学圣地亚哥分校(UCSD)的孟颖教授(Ying Shirley Meng)等人发表在Nano Lett.上,发表时间为2017年11月1日,在线发表仅比崔教授的Science大作晚4天。文章[9]同样是采取了冷冻电镜技术稳定了电化学沉积的活泼的锂金属,同时减少电子束带来的损伤,然后对其纳米结构、化学组成以及固态电解质界面进行了研究。可以说和崔屹教授异曲同工,证明了Cryo-EM是研究对电子束、热敏感的电池材料强有力的工具,能够从最基础的层面获得相关信息。 图8 Cryo-EM用于电沉积Li金属的研究 除了上述两篇将Cryo-EM用于锂电池中敏感电池材料及SEI研究的论文外,就小编有限的认知,可能在有机/无机杂化钙钛矿材料、某些高分子材料、水凝胶、量子点等精细结构、中间态的表征中,Cryo-EM将具有的优势也是不言而喻的。可以预见,不久的将来,这些对电子束、热敏感的活泼材料的原子级别的表征可能会是Cryo-EM在材料领域应用的潜力方向。 4. 总结 2017年10月4日,诺贝尔化学奖一公布就引起了朋友圈的疯狂调侃,认为:冷冻电镜是授予物理学家的化学奖以奖励他们对生物领域的杰出贡献,让众多化学汪深以为然。现在,崔屹教授的Science论文和孟颖教授的Nano Lett.论文终于让这个化学奖多了一些化学的意思了。这种隔壁生物家的孩子“跨界”材料圈完成的令人兴奋的工作已经隐隐有撬动材料学相关研究的苗头了。小编相信,这项引领生物化学研究进入新时代的技术,搅动我大材料江湖也是指日可期! 参考文献 [1] 杨慧, 李慎涛, 薛冰. 冷冻电镜技术: 从原子尺度看生命[J]. 首都医科大学学报, 2017, 38(5): 770-776. [2] 柳正, 张景强. 结构生物学研究方法的重大突破——电子直接探测相机在冷冻电镜中的应用[J]. 生物物理学报, 2014, 30(6): 405-415. [3] 尹长城. 君欲善其事,必先利其器!——2017年诺贝尔化学奖评介[J]. 中国生物化学与分子生物学报, 2017, 33(10): 979-984. [4] Milne J L S, Borgnia M J, Bartesaghi A, et al. Cryo-electron microscopy-a primer for the non-microscopist[J]. FEBS Journal, 2013, 280: 28-45. [5] Wang H, Lei J, Shi Y. Biological cryo-electron microscopy in China[J]. Protein Science, 2017, 26: 16-31. [6] Li Y, Li Y, Pei A, et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy[J]. Science, 2017, 358: 506-510. [7] 材料牛: 崔屹最新science:玩转冷冻电镜——揭密电池材料和界面原子结构,http://www.cailiaoniu.com/108826.html. [8] X-MOL: 化学诺奖冷冻电镜再放异彩,崔屹团队带来重磅Science,http://www.x-mol.com:8081/news/9696. [9] Wang X, Zhang M, Alvarado J, et al. New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM[J]. Nano Letter, 2017, 17: 7606-7612. 本文由材料人编辑部纳米学术组Roay供稿。
  • 《Nature& Science:8月材料领域科研成果汇总》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-09-05
    • 1. Nature:Weyl声子晶体表面波的拓扑负折射 Nature在线发表了武汉大学刘正猷教授、邱春印教授(共同通讯作者)团队题为“Topological negative refraction of surface acoustic waves in a Weyl phononic crystal”的文章,报道了由Weyl声子晶体所承载的拓扑表面波的负折射,这是最近发现的Weyl半金属的声学模拟物。发生这种拓扑负折射的界面是分离晶体不同侧面的一维边缘。通过剪裁Weyl声子晶体的表面端部,可以设计表面声波的恒定频率轮廓,以在某些界面产生负折射,同时在同一样品内的不同界面实现正折射。相比更为常见的表面波行为,由于恒定频率轮廓的开放性,报道的晶体可以防止不必要的反射,这是Weyl晶体拓扑保护表面状态的标志。 文献链接:Topological negative refraction of surface acoustic waves in a Weyl phononic crystal(Nature,2018,DOI: 10.1038//s41586-018-0367-9) 材料牛资讯详戳:今天这所985大学发表了建国后的第一篇Nature,你确定不进来看一眼吗? 2. Science:超四方薄膜通过相间应变实现巨大极化 北京科技大学的陈骏教授以及邢献然教授(共同通讯作者)等人提出了新型“相间应变”的策略并以此在超四方性薄膜上实现了巨大极化。该研究发现利用晶格结构相似、晶格参数不同的两种材料,在外延生长时晶界处的晶格参数是相互匹配的,从而可在材料间产生各向同性应变,即“相间应变”。利用这种“相间应变”策略,研究人员在PbTiO3外延复合铁电薄膜上引入高负压从而实现了巨大的极化性能,其剩余极化强度可达到236.3微库伦/cm2,是现有已知铁电体的2倍。此外,这种薄膜的超四方性相在725℃的高温下依然稳定,而对应块体的相转变温度却只有490℃。 文献链接:Giant polarization in super-tetragonal thin films through interphase strain(Science, 2018, DOI: 10.1126/science.aan2433) 材料牛资讯详戳:北科大今日Science:新型“相间应变”策略构建具备巨大极化强度的铁电薄膜 3. Nature:基于织物的光通信的二极管纤维 麻省理工学院的Yoel Fink(通讯作者)团队提出了一种可扩大生产的热拉伸工艺(drawing process)用于制备电连接的二极管纤维。研究人员首先构建了离散的二极管预制品并将其内置到空腔边缘,接着铜线或者钨线可在空腔中进行连通操作(feed through),当这些预制件被加热拉伸时,这些金属导线就会逐渐靠近二极管直至形成电接触,最终可将数以百计的二极管平行连接到单根纤维中。利用这一新型加工工艺制造的纤维及其织物可以实现具备优异数据传输能力的光学通讯,也为在纤维中引入电子器件提供了新的策略。 文献链接:Diode fibres for fabric-based optical communications(Nature, 2018, DOI: 10.1038/s41586-018-0390-x) 材料牛资讯详戳:今日Nature:半导体智能衣 4. Nature:分子和材料科学的机器学习 北卡罗来纳大学教堂山分校Olexandr Isayev教授和伦敦帝国理工学院Aron Walsh(共同通讯作者)总结了机器学习用于化学与材料领域的最新进展。文中概述了适用于解决该领域研究问题的机器学习技术,以及在该领域的未来发展方向。同时也设想了一个可以通过人工智能来加速分子和材料的设计、合成、表征和应用的前景。在这篇文章中,研究人员回顾了机器学习的基础知识,确定了现有方法有望加速研究进程的领域,并且考虑了实现更广泛的影响所需要的发展方向。 文献连接:Machine learning for molecular and materials science(Nature, 2018, DOI: 10.1038/s41586-018-0337-2)材料牛资讯详戳:Nature综述:机器学习(ML)—研究分子和材料科学的新型利器 5. Nature:锂金属电池固液界面和枝晶的低温标测 康奈尔大学的Lena F. Kourkoutis(通讯作者)课题组采用冷冻电镜技术观察到了锂金属电池中界面膜和枝晶的纳米级结构并以此全面深入地理解了发生在该界面的化学过程。该研究通过快速冷冻液体成分(玻璃化液体电解质),获得了自然状态下锂金属电池中的界面膜结构,之后再利用冷冻扫描透射电镜技术(cryo-STEM)可对这些界面进行结构和化学图谱(mapping)表征。实验表征结果发现,在锂金属电池负极共存着两种不同类型的枝状物,其中一种拥有外延的SEI层,而另一种枝状物则由锂的氢化物组成,这一不同枝状物的共存现象可能为电池容量减少的机理解释提供有力的证据支持。该文也阐明了冷冻电镜技术在探测功能器件界面过程的研究中具有潜在的应用价值。 文献链接:Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries(Nature, 2018, DOI: 10.1038/s41586-018-0397-3) 材料牛资讯详戳:今日Nature:冷冻电镜直接观测锂金属电池中的界面行为 6. Nature:石墨烯纳米带的拓扑能带工程 美国加州大学伯克利分校的Steven G. Louie教授、Michael F. Crommie教授和Felix R. Fischer教授(共通通讯作者)合作报道了拓扑工程修饰GNR超晶格的合理设计和实验实现,从而产生了难以获得的电子结构;此外,该策略还能将新的终态直接设计到一维GNR超晶格的末端。原子级精确的拓扑GNR超晶格由Au(111)表面上的分子前体在超高真空条件下合成,并通过低温扫描隧道显微镜(STM)和光谱学得以表征。实验结果和第一性原理计算表明,该GNR超晶格的边界能带结构(满带和空带)完全由相邻拓扑界面态之间的耦合所定义,这种非凡的一维拓扑相为基??于电子拓扑学一维材料的能带精确调控提供了一种途径,同时其也是一种有前景的一维量子自旋物理学研究平台。 文献链接:Topological band engineering of grapheme nanoribbons(Nature,2018,DOI:10.1038/s41586-018-0376-8) 材料牛资讯详戳:Nature:石墨烯纳米带的拓扑能带工程 7. Science:铈光催化选择性功能化甲烷、乙烷和高级烷烃 上海科技大学左智伟研究员(通讯作者)团队将配位体与金属的电荷转移(LMCT)催化应用于醇原料的直接活化,使得烷氧基自由基介导的环状醇的骨架重排和通过氢原子转移(HAT)的伯醇实现C-H官能化。利用吸收的光能通过瞬时配位的Ce(IV)-醇盐的均裂促进靶向氧化,在温和且操作简单的条件下用廉价的铈(III)盐作为前驱光催化剂,实现了高催化效率(甲烷的转化数高达2900,乙烷的转化数为9700)和选择性。配体-金属电荷转移激发产生于简单醇生成的烷氧基,其反过来充当HAT催化剂。混合相气/液反应适合于连续流动,使气体原料在光催化转化中得到有效利用。这种光催化平台已经实现了甲烷和其他简单烃的几种直接转化,包括胺化,烷基化和芳基化,并为原料烷烃的进一步官能化提供了可靠的机会。 文献链接:Selective functionalization of methane, ethane, and higher alkanes by cerium photocatalysis(Science, 2018, DOI:10.1126/science.aat9750) 材料牛资讯详戳:今日Science:铈盐光催化剂-高效使用天然气的福音 8. Science:在二维狄拉克费米子中电子-电子相互作用的机制 新加坡国立大学的S. Adam教授(通讯作者)团队采用非微扰、精确数值的投射量子蒙特卡洛方法以可控的方式研究可观测物理量的演化,研究发现,在由长程相互作用所控制的区域,费米速度的增强与微扰理论一致。相反地,在靠近由短程相互作用所控制的相变区域,研究人员发现费米速度会被抑制并且数值数据也会崩溃,而对于一条曲线上的长程和短程相互作用的比例也会产生不同的值。此外,研究人员通过重整化群方案将量子蒙特卡洛结论外推到与实验相关的能量标度,所预测的可观测量将取决于库仑相互作用的短程和长程分量以及所观测的能量标度(所有参数都可以在当前的实验中进行调整)。 文献连接:The role of electron-electron interactions in two-dimensional Dirac fermions(Science, 2018, DOI: 10.1126/science.aao2934) 材料牛资讯详戳:新加坡国立大学Science:电子-电子相互作用在二维狄拉克费米子中的作用 9. Nature:磁畴图案的磁电反转 在苏黎世联邦理工学院M. Fiebig教授(通讯作者)团队的带领下,与瑞士保罗谢尔研究所、德国波恩大学、瑞典斯德哥尔摩大学、法国皮卡第大学、日本高能加速器研究机构、日本东京大学、俄罗斯卡尔波夫物理化学研究所、奥地利维也纳工业大学和挪威科技大学合作,分别报告了磁电材料Co3TeO6和多铁材料Mn2GeO4中的整个铁磁和铁电畴图案的反转。在这些材料中,施加的磁场分别反转每个域的磁化或极化,但保留域图案完整。Landau理论表明,这种类型的磁电反转在具有复杂排序的材料中是通用的,其中一个有序参数保持域结构的记忆,而另一个设置其整体符号。域模式反转只是多重铁氧体(multiferroics)等系统中以前未被注意到的效应的一个例子,其中多个有序参数可用于组合。 因此,探索这些效应可以将多铁性推进到新的功能水平。 文献链接:Magnetoelectric inversion of domain patterns(Nature, 2018, DOI:10.1038/s41586-018-0432-4) 材料牛资讯详戳:今日Nature:原来磁电材料还可以这么玩转! 10. Science:一种基于可逆四电子转化为氧化锂的高能量密度锂氧电池 加拿大滑铁卢大学的L. F. Nazar(通讯作者)课题组报道了一种可通过高度可逆的四电子氧化还原反应产生氧化锂的新型锂-氧电池。研究人员首先将操作温度提高到150℃,在这一温度上热力学驱动力更倾向于形成氧化锂而非过氧化锂。而由镍纳米颗粒组成的非碳复合正极则能够原位形成锂镍氧化物(LixNiO2),可以作为促使氧氧键可逆断裂-形成的高效电催化剂。这使得电池在放电时可以产生高达11mAh/cm2的容量,而充电时氧气又可以在低过电势下进行反应。这一研究工作表明了锂-氧电化学可以突破现有电解质和超氧产物等产生的限制,实现接近100%的库伦效率。 文献链接:A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide(Science, 2018, DOI: 10.1126/science.aas9343) 材料牛资讯详戳:电化学大牛最新Science:基于可逆四电子反应的锂-氧电池 11. 石墨烯量子点中相互作用驱动的量子霍尔婚礼蛋糕状结构 美国国家标准与技术研究院的J. A. Stroscio(通讯作者)等人利用隧道测量技术成功地将环形石墨烯谐振器中空间约束和磁约束之间的相互影响可视化,并直接观测到了电子相互作用的痕迹。石墨烯是一种表面暴露大量电子的二维材料,因此被认为是研究外加场中能级变化的理想材料。研究人员首先将石墨烯器件冷却到绝对零度左右,以便创造量子点-小岛作为人工原子,在强度为1特斯拉的磁场中,量子点中的电子堆积更加紧密,相互作用也被加强,最终这些电子将被以导电-绝缘同心环交替的形式进行重排。通过扫描隧道显微镜,不同电子能级的同心环图像被堆放在一起最终实现婚礼蛋糕型结构。因此这一研究为极端条件下观测和了解量子-相对物质的行为提供了有效的方法。 文献链接:Interaction-driven quantum Hall wedding cake–like structures in graphene quantum dots(Science, 2018, DOI: 10.1126/science.aar2014) 材料牛资讯详戳:石墨烯最新Science:检测固态系统中电子间相互作用的“指纹” 12. Science:高性能钙钛矿/Cu(In,Ga)Se2单片串联太阳能电池 加州大学洛杉矶分校的杨阳教授和Qifeng Han(共同通讯作者)等人通过改进叠层器件中的输运顶电极(transport top eletrode)、ICL以及空穴传输层(HTL)等结构,在无需调整CIGS器件结构的情况下成功地对叠层太阳能电池进行了性能优化。在这一电池中,研究人员对CIGS表面进行了纳米尺度的界面构建设计,并利用高度掺杂的PTAA作为子电池之间空穴传输层,以此来保留开路电压和增强填充因子以及短路电流。再将半透明且带隙宽度为1.59eV的钙钛矿和带隙宽度为1.00eV的CIGS分别作为子电池,这一结构改进的叠层电池的能量转化效率可以达到22.43%,并且工作500小时后的效率还能保持在初始效率88%左右。 文献链接:High-performance perovskite/Cu(In,Ga)Se2 monolithic tandem solar cells(Science, 2018, DOI: 10.1126/science.aat5055)