《迄今最小马达仅由十六个原子组成》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-06-18
  • 据物理学家组织网16日报道,来自瑞士联邦国家实验室(Empa)和洛桑联邦理工学院(EPFL)的科学家开发出了世界上最小的分子马达,其由16个原子组成,并且可以在同一个方向稳定旋转,有望将能量收集推升至原子级。此外,该马达恰好在经典运动与量子隧穿间的边界移动,也可以供科学家研究量子隧穿过程及其中能量耗散的原因。

      Empa功能表面研究小组负责人奥利弗·格洛宁说:“这一最小马达不足一纳米,使我们接近分子马达的极限尺寸。”

      研究人员解释说,一台分子机器的功能与其在宏观世界中的对应物体相似:将能量转换为定向运动。自然界中也存在这样的分子马达,如肌球蛋白。肌球蛋白是运动蛋白,在生物体的肌肉收缩和在细胞间输送其他分子方面起重要作用。

      与大型马达类似,新分子马达由一个定子(固定部分)和一个转子(运动部分)组成,转子在定子表面旋转,可以占据6个不同的位置。格洛宁解释说:“为使马达真正发挥作用,至关重要的是定子必须使转子只能沿一个方向移动。”

      结果表明,该分子马达具有99%的方向稳定性,这使其与其他类似的分子马达区别开来,为原子级能量收集开辟了一条途径。

      此外,量子物理学定律指出,粒子可以“隧穿”:即使转子的动能在传统意义上不足,转子也可以克服屏障隧穿。这种运动通常在没有任何能量损失的情况下发生。因此,从理论上讲,在传统物理学向量子力学过渡的区域,转子朝两个方向旋转的几率一样,但该分子马达朝同一方向旋转的几率为99%,表明隧穿过程中存在能量损失。

      研究人员总结道:“这一迄今最小分子马达不仅为分子科学家开发了探索微观世界的工具,也可以供科学家研究量子隧穿过程及其间能量耗散的原因。”

    总编辑圈点

      将宏观世界的概念“马达”引入到分子层面,就是所谓的“分子马达”。分子马达可谓世界上最小的电动机,在合适的外界刺激下,它能够进行机械做功。本研究中,科研人员制备的分子马达则更为“迷你”,只由16个原子组成。除了可以收集能量外,它还有一个重要意义。这种分子马达的转子朝向并非随机,其朝同一方向旋转的几率为99%。这意味着,在粒子隧穿过程中,产生了能量损失。因此,它对量子研究也有启发意义,可进一步探索量子隧穿过程中的能量耗散如何发生。

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2020-06/18/content_447148.htm?div=-1
相关报告
  • 《迄今最小原子存储单元面世》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-11-30
    • 据物理学家组织网23日报道,美国科学家研制出了迄今最小的存储设备,其横截面积仅1平方纳米,容量约为25兆比特/平方厘米,与目前的商用闪存设备相比,每层的存储密度提高了100倍。研究人员表示,最新研究有助于科学家研制出更快、更小、更智能、更节能的芯片,应用于从消费电子到类脑计算机等多个领域。   研究人员称,最新研究基于他们两年前的研究成果。当时,他们研制出了那时最纤薄的存储设备——“atomristor”,其厚度仅为单个原子厚度。但要使存储设备变得更小,横截面积也要更小。因此,在最新研究中,他们将存储器的横截面积缩小到仅1平方纳米。   研究人员解释称,制造存储设备的材料中的缺陷或孔洞是其拥有高密度存储能力的关键所在。最新研究负责人、得克萨斯大学奥斯汀分校电气和计算机工程学系教授德杰·阿金沃德说:“当一个额外的金属原子闯入纳米孔洞内并填充它时,会将自己的一些导电性能赋予材料,这会产生变化或存储效应。”   阿金沃德介绍道,最新研制出的存储器是一种忆阻器,这是存储器研究领域的“香饽饽”,它们可以做更小,同时拥有更多存储容量。存储设备越小,越有望催生更小的芯片和处理器,如此也有助科学家们研制出更紧凑的计算机和手机。缩小尺寸也可以降低存储器的能耗并提高存储容量,这意味着科学家们可以研制出能耗更少但运行速度更快、更智能的设备。   美国陆军研究办公室资助了这一研究,该办公室项目经理帕尼·瓦拉纳西说:“这项研究获得的结果为开发国防部感兴趣的下一代应用,如超高密度存储、神经形态计算系统、射频通信系统等铺平了道路。”   阿金沃德说:“存储器领域的‘圣杯’是用单个原子控制存储功能,我们在新研究中实现了这一点。尽管最新研究使用二硫化钼作为主要纳米材料,但我们认为,该发现可能适用于数百种相关的原子厚度的纤薄材料。”   总编辑圈点   忆阻器就是记忆电阻,最吸引人的一点:它可以记忆流经它的电荷数量,或者说,能记住很多信息,这和生物的神经细胞非常像。亦因此,对忆阻器的研发总是和神经形态计算系统联系在一起。人们曾经很担心这一研究最终会导致《终结者》里的“天网”出现,其获得自我意识后对创造者人类倒戈相向。但就目前的研究水平来说,这一担心还为时过早。越来越小的忆阻器的出现,可以帮助我们实现更小的芯片和处理器,消耗更少的电力、占用更少的空间,然后在遥远的未来,或真正出现一套与生物大脑没有太大区别的计算系统。
  • 《迄今最大规模量子叠加测试完成》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-30
    • 据美国物理学家组织网近日报道,由奥地利与瑞士科学家合作进行的一项新研究,对量子叠加原理进行了迄今最大规模测试:由近2000个原子组成的高温复杂分子被置于量子叠加态,并进行干涉。 量子叠加原理是量子理论的一个标志,它在波函数的框架下对粒子的行为进行描述。粒子就像池塘表面的水波一样,可以表现出干涉效应。但与水波不同的是,量子波通过孤立的单个粒子都可以表现出来。 在量子力学里,双缝实验是一种演示光子或电子等微观物体的波动性与粒子性的实验。 在这个实验中,粒子波同时通过两条缝并进行干涉,这种效应已在光子、电子、中子、原子甚至分子中得到了证明,但它也提出了一个物理学家和哲学家一直在努力解决的问题:这些奇怪的量子效应是如何过渡到我们熟悉的经典世界的。 现在,维也纳大学的马库斯·阿恩特团队以最直接的方式——通过展示更大质量物体的干涉解决了这个问题。 在最近实验中,这些分子的质量超过25000道尔顿(原子质量单位),是之前记录的几倍。其中,通过干涉仪发出的最大分子之一由40000多个质子、中子和电子组成,其德布罗意波长比单个氢原子的直径还要小1000倍。瑞士巴塞尔大学的马塞尔·马约尔团队使用特殊技术合成了如此巨大的分子。 有模型预测,粒子的波函数会以与质量平方成正比的速度自发坍缩。最新实验表明,在给定的时间长度内,重粒子保持叠加状态,且分子处于叠加状态的时间超过7毫秒,设置了新的干涉时限。 阿恩特说:“我们的实验表明,量子力学虽然很奇怪,但也非常坚强。我乐观地认为,未来的实验将在更大规模上对它进行测试,量子和经典之间的界线在变得越来越模糊。”