《改良的CRISPR基因编辑工具可改善HIV,镰状细胞病的治疗方法》

  • 来源专题:生物安全网络监测与评估
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-11-12
  • 希望之城的研究人员可能已经找到一种方法,可以优化最快,最便宜和最准确的基因编辑技术CRISPR-Cas9,从而可以更成功地切除不良的遗传信息。

    这种提高的切割能力可以在一天之内快速追踪针对HIV,镰状细胞病以及其他免疫疾病的潜在疗法。

    研究的主要作者,研究人员特里斯坦·斯科特(Tristan Scott)博士说:“我们的CRISPR-Cas9设计可能是尝试用黄油刀切成肋眼牛排与用牛排刀切成薄片之间的区别。”希望之城基因治疗中心。 “其他科学家试图通过化学修饰来改善CRISPR切割,但这是一个昂贵的过程,就像在刀片上涂金刚石一样。相反,我们设计了一把更好的剪刀,您可以在任何便利店买到。”

    斯科特说,这项研究于11月6日发表在《科学报告》上,这是科学家们第一次系统地研究指导RNA序列以对其进行改变并改善CRISPR-Cas9技术。斯科特说,希望之城的凯文·莫里斯实验室已经提交了一项专利申请,声称这种改进的CRISPR-Cas9设计可以使活性加倍,但确切数量取决于目标位点。

    在旨在开发新疗法的细胞和小鼠模型实验中,下游效应可能更“干净”,因为“敲除”的靶标被更成功地去除了。更明显的结果可以加快从实验室到患者病床的新疗法。从理论上讲,治疗产品应有更多成功的切法,可以转化为更好的治疗方法,但还需要进一步研究。仍然需要确定为何对CRISPR系统进行这种更改可以改善基因编辑的确切机理。

    研究人员通过对化脓性链球菌细菌衍生的“反式激活CRISPR RNA”(也称为“ tracrRNA”)进行了改变,对细胞进行了实验,这是用于指导遗传剪刀(Cas9)转化为正确的基因序列。化脓性链球菌Cas9是最广泛使用的遗传剪刀。科学家使用了RNA蛋白质系统,因为它能使活性爆发,并在引入细胞后约12小时消失,这意味着在“修复”完成后,偶然编辑人类基因组的机会会减少,Scott说过。

    他们发现,经修饰的tracrRNA通过增加遗传物质中所需的突变来改善某些基因的沉默。在这项研究中,该靶标是HIV生命周期的重要组成部分,即免疫CD4 + T细胞上的CCC5蛋白-这是临床试验中的当前靶标,旨在重新构建人的免疫系统以抵抗HIV。修饰的tracrRNA改善了该部位的切割和CCR5的失活,并有望将其转化为对免疫系统的更好保护。

    新设计还更好地改善了HBB基因和BCL11A位点的活性,两者均与镰状细胞疾病有关,并且正在针对开发针对目前无法治愈的导致严重疼痛和过早死亡的血液疾病的疗法。

    斯科特说:“如果这方面的研究保持一致,并且我们可以可靠地提高遗传剪刀的作用,那么最终结果可能是新的或改良的遗传疗法。”

    这项研究得到了美国过敏和传染病研究所(P01 AI099783-01,RO1 AI111139-01)和美国精神卫生研究所(R01 113407-01)的支持。

相关报告
  • 《如何利用CRISPR基因编辑技术改良机体白细胞来有效抵御癌症?》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-11-29
    • 日前在美国,研究人员首次利用基因编辑工具来治疗3名晚期癌症患者,同时1期临床试验结果显现出了很大的希望,截止到目前为止,治疗似乎是安全的,而且有更多的结果有望很快发布。为了开发出了一种安全高效的癌症治疗方法,来自宾夕法尼亚大学等机构的科学家们通过研究开发出了一种先进的免疫疗法,在治疗过程中,研究者将患者自身的免疫细胞从其体内移除,随后对这些免疫细胞进行“训练”来使其能够识别特定的癌细胞,最后再将这些细胞注射回患者体内,这样其就能有效摧毁患者体内繁殖的癌细胞了。 并不像化疗或放疗(其能直接杀灭癌细胞),免疫疗法能够激活患者体内的免疫细胞使其重新发挥作用,研究人员利用名为CRISPR的基因编辑工具来改变免疫细胞,使其能够重新锁定并杀灭癌细胞,利用这种技术,研究人员就能够开发出副作用较小的高效免疫疗法。笔者就是一名药剂学家和生物分子工程师,其非常感兴趣研究新型疗法的开发,笔者的实验室重点关注与编辑基因编辑器,尤其是,研究人员开发了一种基于CRISPR的基因编辑器,其能更好地对癌症和其它疾病进行诊断和治疗,研究人员能将化学、生物学、纳米技术相结合,更高效、更精确地设计、控制和提供基因编辑工具。 训练免疫细胞使其能够寻找并杀灭癌症 在癌症药物试验中制造杀灭肿瘤细胞的第一步就是从癌症患者的血液中分离T细胞(一种能够抵御病原体和癌细胞的白细胞),这项研究中,研究人员招募了2名患有晚期多发性骨髓瘤和1名患有粘液样圆形细胞脂肪肉瘤(myxoid/round cell liposarcoma)的患者参与到研究中。为了在不损伤正常细胞的情况下武装T细胞并增强其抗癌能力,研究人员对T细胞进行了改造,使其缺失了三个基因并增加了一个基因,随后再将改造过的T细胞注回癌症患者体内。 其中缺失的两个基因能够编码T细胞受体,该受体是T细胞表面的特殊蛋白,其能识别并结合癌细胞上的抗原分子;当这些工程化的T细胞结合这些抗原时,其就能攻击并直接杀灭癌细胞;但问题是,单个T细胞能够识别机体内多种不同的抗原,这或许就会降低其寻找并攻击癌细胞的效率,通过消除这两个基因后,T细胞就不太可能会攻击错误的靶点或宿主了,这种现象称之为自身免疫。 此外,研究人员还破坏了第三种基因,即程序性细胞死亡蛋白1(programmed cell death protein 1),其能有效减缓机体的免疫反应,破坏程序性细胞死亡蛋白1能够改善T细胞的效率。转化这些细胞的最后一步就是添加一种基因,其能产生新型的T细胞受体,该受体能够识别并抓住癌细胞上一种名为NY-ESO-1的特殊标志物,随着上述三个基因被剔除及一个基因的添加,T细胞就能够做好有效抵御癌症的准备。 CRISPR在临床试验中处于什么位置? 那么研究人员如何对T细胞进行编辑呢?他们利用CRISPR/Cas9基因编辑技术进行研究,该技术能利用两个组分来发挥作用,即导向CRISPR分子能寻找并结合靶向基因位点,Cas9能够切割DNA最终使基因失活;随后研究者利用电穿孔技术(该技术能在细胞膜上产生临时孔),从而将Cas9蛋白与靶向分子(靶向三个基因)传递给数百万个T细胞。 当利用CRISPR干扰这三个基因的功能后,研究者利用一种安全失活的病毒将另外一个基因运输到T细胞中,使其能够识别癌症特异性标志物NY-ESO-1,移除数百万个细胞中这些基因的功能,并促进T细胞在体外培养皿中繁殖成数十亿个细胞,这可能需要几天到几周的时间。在将CRISPR修饰的T细胞注射到患者体内的前四天,研究热暖给予三位患者每人注射了几剂化疗药物来剔除其体内存在的白细胞。最终,大约有1亿/公斤个改良的T细胞被注射到了患者体内。 CRISPR未来的潜力 当注射了T细胞后,研究人员在最初28天里对患者进行持续监测,随后每月进行随访,持续六个月,此后研究者每三个月对患者进行检测,观察其机体出现的不良反应,比如免疫反应等;这种T细胞疗法常常会带来多种副作用,包括发烧、肌肉疼痛、头痛、意识错乱、癫痫发作、低血压、出血性疾病和多器官功能障碍等,目前研究人员并未在任何患者机体中发现毒性作用的迹象。 但第一位晚期多发性骨髓瘤患者在60天后仍然会继续出现肿瘤,尽管对于该患者而言治疗似乎并没有那么成功,但研究者所进行的1期临床试验主要是为了测试疗法的安全性,目前研究者并未报告任何出现出现毒性表现。研究者使用串联CT扫描对第二位晚期粘液样圆形细胞脂肪肉瘤患者进行监测,该患者在治疗90天后情况比较稳定;第三位多发性骨髓瘤患者近期才开始试验,目前并没有结果;研究者表示,这种基于CRISPR基因编辑技术所产生新型疗法对于癌症患者治疗并不会带来严重的毒性作用,这或许是后期研究人员进一步向临床方向研究努力的重要一步。
  • 《如何使基因编辑工具CRISPR工作得更好》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2018-11-30
    • 近年来最重大的科学进展之一是发现和发展了利用一种称为CRISPR的快速且负担得起的技术对生物进行基因改造的新方法。现在,德克萨斯大学奥斯汀分校的科学家们说,他们已经发现了一种容易升级的技术,这种技术可以导致更精确的基因编辑,并提高安全性,从而为基因编辑用于人类打开足够安全的大门。 分子生物学家小组发现了确凿的证据,目前在CRISPR基因编辑中使用的最流行的酶,也是第一个被发现的酶Cas9,它比使用较少的CRISPR蛋白(称为Cas12a)具有更低的有效性和精确性。 因为Cas9更可能编辑植物或动物基因组的错误部分,破坏健康功能,所以科学家在8月2日发表在《分子细胞》杂志上的研究报告中提出,转用Cas12a将导致更安全和更有效的基因编辑。 “总体目标是找到自然界给我们的最好的酶,然后使它变得更好,而不是采用第一个通过历史偶然发现的酶,”分子生物科学的助理教授和这项研究的合著者Ilya Finkelstein说。 科学家们已经开始使用CRISPR,这是一种细菌用来抵御病毒的自然机制,来更多地了解人类基因,转基因植物和动物,并发展这种由科幻小说激发的进步,如含有抗脂肪小鼠基因的猪能导致瘦培根。许多人期待CRISPR能够为人类疾病提供新的治疗方法,并作物拥有更高产量或抵抗干旱、害虫。 但是,在自然界发现的CRISPR系统有时会瞄准基因组中的错误位点,这应用于人类可能是灾难性的,例如,未能纠正遗传疾病,而是将健康细胞转化为癌细胞。 以往的研究表明Cas12a比Cas9好,但以前的研究尚不明确。这项最新研究中,研究人员说,通过显示出Cas12a是比Cas9更精确的基因编辑刀结束了案例,并解释原因。 该研究小组由研究生Isabel Strohkendl和Rick Russell带领,发现Cas12a的选择性更强,因为它像维可牢一样与基因组靶结合,而Cas9更像超级胶一样与靶结合。每种酶都携带一串用RNA编写的基因代码,与病毒DNA中写入的一串目标基因代码相匹配。当它碰到一些DNA时,酶开始试图通过形成碱基对来与它结合——从一端开始,然后沿着它的方向工作,测试一侧的每个字母(DNA)与另一侧相邻的字母(RNA)匹配得如何。 对于Cas9,每个碱基对紧密地粘合在一起,就像一块超级胶水。如果每边的前几个字母匹配得很好,那么Cas9已经与DNA强结合了。换言之,Cas9关注基因组目标中的前七或八个字母,但是随着这个过程的继续就关注较少,这意味着它很容易忽略稍后在过程中的失配,这将导致它编辑基因组的错误部分。 对于Cas12a来说,它更像是一个尼龙搭扣。在沿途的每一点联系相对较弱。沿着带子的两边是一个很好的匹配,保持足够长度进行编辑使其联接到一起。这使得它更可能只编辑基因组的预期部分。 “它使碱基对的形成过程更加可逆,”Russell说。“换句话说,Cas12a在继续之前对检查碱基对做得更好。在七或八个字母之后,Cas9停止检查,而Cas12a继续检查到大约18个字母。” 研究人员说,Cas12a还不是完美的,但是研究还建议了进一步改善Cas12a的方法,也许有一天实现创造“精密手术刀”的梦想,一种本质上防错的基因编辑工具。 Finkelstein说:“总体来说Cas12a更好,但是有些地方Cas12a仍然对RNA和基因组靶标之间的某些错配有令人惊讶的盲目。”“因此,我们的工作为进一步改进Cas12a指明了一条清晰的道路。” 研究人员目前将这些见解用于设计改进Cas12a的后续项目。 该研究的其他合作者是研究生James Rybarski和前本科生Fatema Saifuddin。 这项工作得到了国立普通医学科学研究所和韦尔奇基金会的资助。