《荷兰中日新研究人员合作 制成活性高20倍的镍铂合金空心纳米催化剂》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2020-01-03
  • 据外媒报道,催化剂可以加速化学反应,但是广泛用于催化剂的金属铂不仅非常稀有,还非常昂贵。因此,荷兰埃因霍温理工大学(Eindhoven University of Technology,TU/e)的研究人员与中国、新加坡和日本的研究人员合作,研发出一种活性高20倍的替代品:一种由镍和铂合金制成的空心纳米催化剂。埃因霍温理工大学研究人员Emiel Hensen希望未来利用该新催化剂研发一个大约10兆瓦、冰箱大小的电解槽。

    到2050年,荷兰政府希望利用太阳能或风能等可持续能源,满足荷兰全国的能源需求。因为此类能源不是在任何时候都可使用,因此是否能够存储此类可再生能源非常重要。由于电池能量密度低,并不适合用于存储大量能量。更好的解决办法是利用化学键,氢就是最好的气体化学键。利用水,电解槽会将(过量)电能转化为可存储的氢。燃料电池则相反,会将存储的氢转化为电能,不过,此两种技术都需要催化剂来推动。

    由于具备高活性,催化剂可帮助进行转化,而且大多由铂构成。不过,铂金属非常昂贵,且相对稀缺,如果想要大规模利用电解槽和燃料电池,就会是一个障碍。TU/e催化学教授Emiel Hensen表示:“因此,中国的研究人员研发了一种铂镍合金,此种合金可以降低催化剂的成本,且增加活性。”有效催化剂的活性高,就可每秒将更多的水分子转化成氢。

    在燃料电池中成功进行了测试

    除了选用其他金属,研究人员还能够对形态做出重大改变。催化剂中的原子必须与水和/或氧分子键合,才能够将其进行转化。因此,键合点越多,活性就会越高。Hensen表示:“必须创造尽可能大的金属表面积,所研发的中空纳米材料才能够既从内部进入,又从外部进入,创造出最大的表面积,让更多材料可以同时发生反应。”此外,Hensen还利用量子化学技术证明了纳米材料的比表面结构进一步增加了催化剂的活性。

    在Hensen的模型中进行计算之后,发现与目前铂催化剂的活性相比,铂镍合金支持的催化剂的活性高出20倍。研究人员还在燃料电池实验中发现了同一结果,“很多对基础研究的批评都是说此种研究是在实验室中完成的,当被应用于真正的设备时,往往无效。不过,我们已经证明此种新型催化剂有实际的应用价值。”

    催化剂必须具备稳定性使其能够在氢动力汽车或房屋中工作数年,因而,研究人员在燃料电池中对该催化剂进行了5万次循环测试,发现其活性几乎没有下降。

    此种新型催化剂的应用范围非常广,既可以用于燃料电池,也可以用于电解槽中的逆反应。例如,燃料电池可以用于氢动力汽车,而有些医院也已经采用氢燃料电池为应急发电机供电。而电解槽可用于海上风电场,甚至可以用于风力涡轮机。运输氢气比运输电力的成本低得多。

    Hensen的梦想更大,他表示:“我希望我们能够在每一个街区安装该电解槽,该冰箱大小的设备在白天,可以从附近屋顶上的太阳能板上将所有能量以氢气的形式存储起来。未来,地下的天然气管道可以输送氢气,家用集中供热锅炉将被燃料电池所取代,而燃料电池可将存储的氢气转化成电能,就可以充分地利用太阳能了。”

    不过为了实现这一点,还需要大力发展电解槽。与其他TU/e研究人员以及Brabant地区的工业伙伴一起,Hensen参与了埃因霍温理工大学能源研究所的工作,目标是将现有商用电解槽变成一个冰箱大小的电解槽,容量为10兆瓦。

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=559121
相关报告
  • 《中国香港研究人员开发出可提高氨生产效率的双金属合金纳米催化剂》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-12-13
    • 转自全球技术地图 据香港城市大学网站12月7日消息,中国香港城市大学的研究人员开发出一种双金属合金纳米催化剂,可提高从硝酸盐(NO3-)中电合成氨的效率。氨是一种有前途的无碳能源载体,可以为燃料电池提供氢源,而且比氢更容易液化和运输,可采用电催化硝酸盐还原反应合成,但反应过程中产生的不良副产物和竞争性析氢反应降低了氨的产率。研究人员在钌(Ru)基催化剂中加入了铁(Fe)来调节活性位点的原子配位环境,优化了Ru的电子结构和表面性质,从而优化了催化剂生产氨的催化活性,采用一锅法合成具有低配位Ru位点的超薄纳米片并组装成花状结构(即RuFe纳米花)。该新型双金属合金电催化剂具有高度稳定的电子结构,抑制了竞争性析氢反应并降低了电催化硝酸盐还原反应的能垒,表现出优异的电荷转移效率(92.9%),氨的产率几乎为单一Ru纳米片的6.9倍。该催化剂在下一代电化学能源系统中具有巨大潜力,进一步促进可持续的氮循环,推动实现无碳能源。相关研究成果发表在《美国国家科学院院刊》(PNAS)上。
  • 《吕坚院士团队最新成果:图灵催化剂-开启高性能纳米催化剂设计新风向》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 重量能量密度大且清洁的氢气燃料在能源可持续性和减缓全球变暖相关的环保技术革命中起着至关重要的作用。然而,目前约95% 的氢气产量主要通过化石燃料的蒸汽重整供应,过程中会伴随大量的二氧化碳排放。净零碳排放的电解水制氢是最为清洁的一种氢气生产工艺,但其大规模应用受到低效率和高成本(4-11美元/kg)的限制。根据美国能源部的路线图, 到2031年需实现1公斤绿氢的生产成本低于1美元的目标。近年, 随着我国风能与太阳能产能的大幅发展, 由于诸多原因未能上网的弃电数以千亿度记, 利用过剩电力制氢为降低绿氢成本带了新的机遇。阴离子交换膜电解槽制氢是促使达成价格目标的技术路线之一, 而催化剂的效率及稳定性问题一直是该技术的瓶颈。 具有可控缺陷或应变修饰的低维纳米材料是一类用于制备绿氢的高效电催化剂;然而,由于材料自发的结构退化和应变弛豫,稳定性不足导致性能衰退仍然是一个亟待解决的关键问题。本文提出了一种图灵结构化策略,通过引入高密度纳米孪晶来激活和稳定超薄金属纳米片。图灵结构是通过纳米晶粒的约束取向粘附而形成的,它形成了内在稳定的纳米孪晶网络并同时产生了晶格应变效应。将拥有图灵结构的PtNiNb纳米片催化剂应用于析氢反应,孪晶构型和应变效应协同降低了水分解的反应能垒,并优化了反应过程中的氢吸附自由能。与商用 20% Pt/C 相比,图灵PtNiNb纳米催化剂的质量活性和稳定性指数分别提高了 23.5 倍和 3.1 倍。负载图灵PtNiNb催化剂的阴离子交换膜膜电极电解槽(铂载量仅为 0.05 mg cm-2)在工业化条件10000 A m-2 的电流密度下能稳定运行 500 小时以上,展现了卓越的催化稳定性和工业应用的潜力。此外,这一新范式还可扩展到基于 Ir/Pd/Ag 的纳米催化剂体系,从而证明图灵型催化剂的普适性。 【简介】 高活性和高稳定性是电化学催化剂追求的两大关键要素。合成高活性催化剂的有效策略之一是通过引入应变或晶体缺陷来活化低维纳米材料。晶格应变可以通过改变 d 带中心和带宽来优化表面电子结构,从而调整催化剂表面的反应中间体吸附能,提高催化活性。金属催化剂表面的原子构型是决定催化剂性能的另一个关键因素,尤其是晶体缺陷(如孪晶和层错)的表面构型,由于特定的配位结构和缺陷引起了晶格应变,这些表面构型通常是催化反应的活性位点。然而,应变/缺陷驱动的低维纳米催化剂的高表面能和热力学不稳定性往往会诱发应变弛豫、自发表面重构和向无孪晶的Wulff结构转化,从而导致自身结构退化和催化稳定性恶化,难以实现长期稳定催化的目标。这些局限性对低维纳米催化剂的活性和稳定性的设计策略提出新的需求。 低维纳米材料的构建主要集中在以实现功能为目的的结构控制上,很少考虑利用时空控制进行材料调控。图灵图案(图灵斑图)被称为时空静止图案,普遍存在于远离平衡状态的生物和化学系统中,如Dania rero条纹、贝壳上规则的彩色花样以及微乳液中的六边形阵列。这些图案的形成与艾伦·麦席森·图灵(A.M. Turing)提出的反应-扩散理论有关。在图灵理论中,扩散系数较小的激活因子会诱导局部优先生长,从而形成图灵图案。图灵图案常见的可视化形状是六角形排列的圆柱体、斑点样和迷宫图样。这些图灵图案是原始均质系统中自发的对称性破缺部分。在纳米级图灵图案中出现的这种拓扑特征可能是通过纳米晶粒的各向异性生长实现的。这种破缺的晶格对称性对特定构型(如孪晶和具有内在破缺对称性的二维材料)的生长具有重要的晶体学意义。受晶体对称性和形态发生学(morphogenesis)之间相关性的启发,图灵结构可提供一种新的结构模式,用于设计具有应变和缺陷修饰的低维材料。图灵图案中的两个反相和丰富的相边界对于界面主导的应用,尤其是电催化应用具有极大的结构优势。因此,探索图灵理论在纳米催化剂生长中的应用及其与晶体缺陷的关系具有重要的科学意义。 研究团队通过简易的物理气相沉积技术制备得到铂镍铌(PtNiNb)超薄纳米片,这种纳米片呈现出超纳米尺寸(< 10 nm)的图灵结构,可以作为一种高效的电催化剂应用于析氢反应(HER)。图灵条纹是由具有不同取向的纳米晶粒相互约束形成的,在形成过程中的取向粘附导致了高密度的纳米孪晶和较大的晶格应变。图灵结构使得图灵PtNiNb纳米片在碱性析氢反应中具有超长稳定性和较高的质量活性,这些性能指标比商用Pt/C催化剂提高了一个数量级以上。密度泛函理论(DFT)计算证明了孪晶边界和应变的协同效应加速了水分子解离并优化了电子结构和氢吸附自由能。 相关研究成果以题为“Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction”发表在顶尖期刊《Nature Communications》上。通讯作者为吕坚院士(香港城市大学)。谷佳伦博士和李兰西博士生为论文共同第一作者。其他作者包括:陈博教授,田夫波教授,谢友能博士生,王艳菊博士,钟景博士生,沈君达博士生。 迄今为止,图灵图案主要在软有机物中观察到。这项研究证明图灵结构可以在纳米级的低维固体材料中生成,并与晶体缺陷工程和应变效应耦合。由于高密度纳米孪晶和显著的晶格应变协效应,图灵二维纳米片具有高电催化活性和稳定性。这可用于指导开发其他电催化材料,推进可再生能源的可持续发展。因此,图灵结构代表了高性能低维纳米催化剂设计的新范例,展示了缺陷调制和应变效应的协同优化可以提高此类材料的稳定性和催化活性。 文献信息:https://www.nature.com/articles/s41467-023-40972-w