《《自然·化学》:自组装纳米球成为高效催化剂》

  • 来源专题:海西院结构化学领域监测服务
  • 编译者: fjirsmyc
  • 发布时间:2016-01-19
  • 近年来,超分子化学的快速发展使得模仿自然界大分子的功能成为可能。其中,模仿生物酶分子的机理来提高催化剂性能成为最引人注目的研究方向之一。

    最近,荷兰阿姆斯特丹大学范特霍夫分子科学研究所(Van 't Hoff Institute for Molecular Sciences, HIMS)Joost N. H. Reek领导的研究小组就利用了这种思路开发出了提高催化性能的新方法。他们研发出一种官能化的自组装纳米球,使其以“纳米富集器”的作用实现高效的催化转化过程。相关研究成果1月11日在线发表在《自然·化学》期刊上(Nat. Chem., 2016, DOI: 10.1038/nchem.2425),论文的第一作者为HIMS的博士后王其强(现为中国科学院化学所研究员)。

    “纳米富集器”的结构,图来源:《Nature Chemistry》期刊

    新的催化纳米球概念的灵感来自于天然酶的工作原理。这些酶在预定的“口袋”位置结构目标分子,在空间上接近它们的活性位点,从而有助于高效化学转换。该团队合成的“纳米容器”模仿了生物酶的性质,并且通过使催化剂达到非常高的局部浓度,进一步增强了催化性能。

    自组装

    新的纳米容器通过自组装而形成:它混合了12个钯金属原子和24个所谓ditopic的氮配体以形成纳米尺寸的球体。这种配体被能与胍结合的基团修饰,以使所得到的纳米容器能够在其内部结合磺酸盐和羧酸盐。由于所谓的协同结合(采用多个结合位点),“入住”的磺酸盐因此比羧酸盐更强烈地结合其中。这些研究人员利用这种机理在纳米球中牢固地固定住基于磺酸化金的催化剂,而其余的结合位点可用于预组织需要转换的羧酸酯部分(底物)。

    工作原理示意图,图来源:《Nature Chemistry》期刊

    增强的反应速率

    这个“纳米富集器”系统的工作原理基于金催化的环化反应。局部高浓度的金属催化剂与预组织的底物相结合,反应速率比通常情况下将它们简单溶解于溶剂中显著增加。反应速率通常随催化剂和底物浓度增加而增加,不过会受限于溶解性问题或不理想的催化剂/反应物比例。自组装的“纳米富集器”利用局部浓度的优势解决了这个问题。

    广泛适用的策略

    由于许多现有的金属催化剂都利用了磺酸基团(以使它们更易溶于水),该研究提出的“纳米富集器”系统可能提供了一个广泛适用的一般性策略,以适用于许多不同的反应。此外,研究人员确定,其中包封的含磺酸盐的金催化剂不会(或仅缓慢地)转换中性(酸)的底物。这提供了另一种可能,即具有底物选择性的催化体系和利用碱来作为触发控制催化反应的“开/关”。

    相关阅读:物理学家组织网报道

    (摘自 X-MOL化学平台 http://www.x-mol.com/news/1740

  • 原文来源:http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2425.html
相关报告
  • 《远程控制活细胞内化学反应的纳米催化剂》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-08-12
    • 在我们身体的生物反应中负责催化反应的酶很难用于诊断或治疗,因为它们只对某些分子起反应或稳定性低。许多研究人员预计,如果这些问题得到改善,或者如果人造催化剂被开发出来,通过满足体内的酶来产生协同效应,将会有诊断和治疗疾病的新方法。特别是,如果能够对外界刺激(如磁场)作出反应的人工催化剂得到开发,那么从体外远程控制生物反应的新治疗方法就可能成为现实。 由香港邮政化学系李苏教授领导的研究小组开发了一种名为magner的远程磁敏人工催化剂,该催化剂在活细胞内显示出很高的催化效率。这项研究作为国际纳米技术杂志《纳米快报》的封面补充论文发表。 该研究小组模拟了细胞内囊泡的结构,并在一个中空的二氧化硅纳米壳内合成了一个含有氧化铁纳米颗粒和钯催化剂的磁催化复合纳米反应器。 当磁纳米粒子遇到交变磁场时,内部的氧化铁纳米粒子会产生磁场致热,只激活钯催化剂而不提高外部温度。该研究小组成功地实现了高效的催化反应,将非荧光反应物转化为荧光产物,方法是在活细胞中植入磁器,然后施加交变磁场。研究小组还证实,催化剂mago - ner可以在很长一段时间内保持活性,不受细胞内生物分子的污染,不影响细胞的存活。 利用mago - ner,可以开发出人工合成分子或利用对人体无害的磁场在细胞内诱导化学反应等可以人为遥控细胞功能的诊断和治疗方法。 领导这项研究的李修教授解释说:“这项研究是利用我们实验室多年来开发的hallow纳米反应器材料的结果,它被视为一种创新的化学工具,将推动生物医学和生物研究。” 这项研究是在国家研究基金会的研究带头人计划(创造性研究)的支持下进行的。
  • 《吕坚院士团队最新成果:图灵催化剂-开启高性能纳米催化剂设计新风向》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 【导读】 重量能量密度大且清洁的氢气燃料在能源可持续性和减缓全球变暖相关的环保技术革命中起着至关重要的作用。然而,目前约95% 的氢气产量主要通过化石燃料的蒸汽重整供应,过程中会伴随大量的二氧化碳排放。净零碳排放的电解水制氢是最为清洁的一种氢气生产工艺,但其大规模应用受到低效率和高成本(4-11美元/kg)的限制。根据美国能源部的路线图, 到2031年需实现1公斤绿氢的生产成本低于1美元的目标。近年, 随着我国风能与太阳能产能的大幅发展, 由于诸多原因未能上网的弃电数以千亿度记, 利用过剩电力制氢为降低绿氢成本带了新的机遇。阴离子交换膜电解槽制氢是促使达成价格目标的技术路线之一, 而催化剂的效率及稳定性问题一直是该技术的瓶颈。 具有可控缺陷或应变修饰的低维纳米材料是一类用于制备绿氢的高效电催化剂;然而,由于材料自发的结构退化和应变弛豫,稳定性不足导致性能衰退仍然是一个亟待解决的关键问题。本文提出了一种图灵结构化策略,通过引入高密度纳米孪晶来激活和稳定超薄金属纳米片。图灵结构是通过纳米晶粒的约束取向粘附而形成的,它形成了内在稳定的纳米孪晶网络并同时产生了晶格应变效应。将拥有图灵结构的PtNiNb纳米片催化剂应用于析氢反应,孪晶构型和应变效应协同降低了水分解的反应能垒,并优化了反应过程中的氢吸附自由能。与商用 20% Pt/C 相比,图灵PtNiNb纳米催化剂的质量活性和稳定性指数分别提高了 23.5 倍和 3.1 倍。负载图灵PtNiNb催化剂的阴离子交换膜膜电极电解槽(铂载量仅为 0.05 mg cm-2)在工业化条件10000 A m-2 的电流密度下能稳定运行 500 小时以上,展现了卓越的催化稳定性和工业应用的潜力。此外,这一新范式还可扩展到基于 Ir/Pd/Ag 的纳米催化剂体系,从而证明图灵型催化剂的普适性。 【简介】 高活性和高稳定性是电化学催化剂追求的两大关键要素。合成高活性催化剂的有效策略之一是通过引入应变或晶体缺陷来活化低维纳米材料。晶格应变可以通过改变 d 带中心和带宽来优化表面电子结构,从而调整催化剂表面的反应中间体吸附能,提高催化活性。金属催化剂表面的原子构型是决定催化剂性能的另一个关键因素,尤其是晶体缺陷(如孪晶和层错)的表面构型,由于特定的配位结构和缺陷引起了晶格应变,这些表面构型通常是催化反应的活性位点。然而,应变/缺陷驱动的低维纳米催化剂的高表面能和热力学不稳定性往往会诱发应变弛豫、自发表面重构和向无孪晶的Wulff结构转化,从而导致自身结构退化和催化稳定性恶化,难以实现长期稳定催化的目标。这些局限性对低维纳米催化剂的活性和稳定性的设计策略提出新的需求。 低维纳米材料的构建主要集中在以实现功能为目的的结构控制上,很少考虑利用时空控制进行材料调控。图灵图案(图灵斑图)被称为时空静止图案,普遍存在于远离平衡状态的生物和化学系统中,如Dania rero条纹、贝壳上规则的彩色花样以及微乳液中的六边形阵列。这些图案的形成与艾伦·麦席森·图灵(A.M. Turing)提出的反应-扩散理论有关。在图灵理论中,扩散系数较小的激活因子会诱导局部优先生长,从而形成图灵图案。图灵图案常见的可视化形状是六角形排列的圆柱体、斑点样和迷宫图样。这些图灵图案是原始均质系统中自发的对称性破缺部分。在纳米级图灵图案中出现的这种拓扑特征可能是通过纳米晶粒的各向异性生长实现的。这种破缺的晶格对称性对特定构型(如孪晶和具有内在破缺对称性的二维材料)的生长具有重要的晶体学意义。受晶体对称性和形态发生学(morphogenesis)之间相关性的启发,图灵结构可提供一种新的结构模式,用于设计具有应变和缺陷修饰的低维材料。图灵图案中的两个反相和丰富的相边界对于界面主导的应用,尤其是电催化应用具有极大的结构优势。因此,探索图灵理论在纳米催化剂生长中的应用及其与晶体缺陷的关系具有重要的科学意义。 研究团队通过简易的物理气相沉积技术制备得到铂镍铌(PtNiNb)超薄纳米片,这种纳米片呈现出超纳米尺寸(< 10 nm)的图灵结构,可以作为一种高效的电催化剂应用于析氢反应(HER)。图灵条纹是由具有不同取向的纳米晶粒相互约束形成的,在形成过程中的取向粘附导致了高密度的纳米孪晶和较大的晶格应变。图灵结构使得图灵PtNiNb纳米片在碱性析氢反应中具有超长稳定性和较高的质量活性,这些性能指标比商用Pt/C催化剂提高了一个数量级以上。密度泛函理论(DFT)计算证明了孪晶边界和应变的协同效应加速了水分子解离并优化了电子结构和氢吸附自由能。 相关研究成果以题为“Turing structuring with multiple nanotwins to engineer efficient and stable catalysts for hydrogen evolution reaction”发表在顶尖期刊《Nature Communications》上。通讯作者为吕坚院士(香港城市大学)。谷佳伦博士和李兰西博士生为论文共同第一作者。其他作者包括:陈博教授,田夫波教授,谢友能博士生,王艳菊博士,钟景博士生,沈君达博士生。 迄今为止,图灵图案主要在软有机物中观察到。这项研究证明图灵结构可以在纳米级的低维固体材料中生成,并与晶体缺陷工程和应变效应耦合。由于高密度纳米孪晶和显著的晶格应变协效应,图灵二维纳米片具有高电催化活性和稳定性。这可用于指导开发其他电催化材料,推进可再生能源的可持续发展。因此,图灵结构代表了高性能低维纳米催化剂设计的新范例,展示了缺陷调制和应变效应的协同优化可以提高此类材料的稳定性和催化活性。 文献信息:https://www.nature.com/articles/s41467-023-40972-w