《苏州纳米所梁伟团队在外腔超窄线宽半导体激光研究领域取得进展》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-03-07
  •   未来的诸多高新技术应用和重大科研项目都迫切需要高性能、低成本、小型化的窄线宽激光,这些应用领域包括未来自动驾驶普及可能采用的调频连续波激光雷达,低轨道卫星网络使用的相干激光通讯,即将开展的太空引力探测,以及量子信息等。成熟的窄线宽固体和光纤激光在过去10年间线宽停留在kHz量级,体积大成本高,无法满足上述经济发展和科研项目对激光性能、成本和体积提出的更高要求。

      使用高品质光腔通过光反馈自注入锁频压窄半导体激光线宽是近年来发展起来的新技术,可在性能、体积、大小、功耗各项指标超越传统的固体和光纤窄线宽激光。其中回音壁和片上微环腔是近些年学术界研究的热点,制作的外腔窄线宽激光性能也获得了长足的进步。但由于材料吸收和非线性效应的限制,这些固体微腔外腔激光的噪声和功率都难以进一步改进。中空FP光腔热效应和非线性效应非常低,是制作外腔窄线宽激光的理想选择。传统的超稳FP腔尺寸过大,需要复杂的系统维持高稳定度,只能用于实验室。

      中国科学院苏州纳米所梁伟研究员团队开发了mm级腔长和>108高品质因子的FP光腔,使用自注入锁定技术研发了小体积、低成本的超窄线宽半导体激光,其洛伦兹线宽低于Hz,积分线宽低于100Hz,性能优于已报道的片上微环混合集成窄线宽激光。该成果可极大加速基于FP高Q微腔的窄线宽激光技术走向实用化,该成果以Compact sub-hertz linewidth laser enabled by self-injection lock to a sub-milliliter FP cavity为题发表在Optics Letters。该论文第一作者和通讯作者为梁伟研究员。

      此外,梁伟研究员与深圳量子院和阿联酋、俄罗斯多位学者联合撰写了题为Recent advances in laser self-injection locking to high-Q microresonators的综述,介绍激光自注入锁定技术进展,发表于Frontiers of physics。该论文第一作者为阿联酋阿布扎比技术创新研究所Nikita M. Kondratiev研究员,通讯作者为Nikita M. Kondratiev研究员和南方科大刘骏秋教授。

      以上两项工作得到了国家自然基金面上项目、中国科学院基础研究团队计划、江苏省和苏州市外国专家计划等项目的资助。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202303/t20230303_6688322.html;https://opg.optica.org/ol/abstract.cfm?uri=ol-48-5-1323;https://journal.hep.com.cn/fop/EN/10.1007/s11467-022-1245-3
相关报告
  • 《苏州纳米所梁伟等在高重复频率窄线宽外腔激光器领域取得进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-10-26
    • 随着自动驾驶的发展,调频连续波激光雷达(FMCW LiDAR)受到越来越多的关注。FMCW方案使用连续扫频激光光源,原理是目标反射光与参考光在探测器混合拍频,目标距离与拍频信号频率相对应。与基于飞行时间(TOF)的脉冲 LiDAR相比,使用相干探测的FMCW LiDAR可以很好的抵抗阳光直射和其他激光雷达的干扰。FMCW激光雷达分辨率与扫频范围相关,不需要使用高带宽的器件就能实现较高的分辨率,更重要的是利用多普勒效应通过单次测量可以同时得到距离和速度信息。窄线宽线性扫频光源是FMCW LiDAR的关键器件,激光器线宽会影响探测距离和测量灵敏度,而重复频率则会影响激光雷达的点云密度。 近日,苏州纳米所梁伟研究员团队开发了线宽5.06kHz、重复频率100kHz的外腔窄线宽扫频激光器,为实现较长距离的调频连续波激光雷达测距提供了一种有效光源。 线宽测量系统装置示意图如图 1 所示,插图是封装好的激光器。利用外差干涉仪测量了激光器的线宽,20dB洛伦兹线宽为71.6 kHz,对应的激光器线宽为5.06 kHz。 通过搭建光纤干涉仪评估了该激光器的测距性能,当驱动电流重复频率1 kHz时,连续线性扫频范围超过1 GHz。增大扫频重复频率至100 kHz时,扫频范围降低到228.9 MHz,对应的自由空间分辨率为0.7129 m。从图3中可以看出,当光纤长度为156米(对应于自由空间110米反射)时,信噪比 SNR仍然高于35 dB 。 该团队利用外腔压缩激光器线宽,改变驱动电流实现频率调谐,开发了线宽5.06 kHz、重复频率100 kHz的外腔窄线宽扫频激光器,可以满足自动驾驶数百米测距的需求。最新研究成果中,通过优化调频机制,连续线性扫频范围已经达到4GHz,对应测距空间分辨率约为3.75厘米。 相关成果以“Narrow linewidth external cavity laser capable of high repetition frequency tuning for FMCW LiDAR”为题发表于国际期刊IEEE Photonics Technology Letters。中国科学院苏州纳米所为该论文第一完成单位,纳米器件研究部博士后吴映和博士生邓力华为论文共同第一作者,纳米器件研究部梁伟研究员为论文通讯作者。 以上工作得到了国家自然科学基金支持。            论文链接:https://ieeexplore.ieee.org/document/9872030/
  • 《苏州纳米所在半导体SERS研究中取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-12-20
    • 有一种元素,以单质分子形式构成了大气体积的 21% 、以化合物形式构成了地壳总质量的 48.6% ,这就是氧。因其活泼的化学性质及其较大的电负性,成就了自然界物种的多样性。自 1777 年由拉瓦锡发现以来,氧元素一直都是化学家的宠儿。如今在新兴的半导体 SERS 领域,它的重要性再一次被体现。   自上世纪 70 年代表面增强拉曼光谱( SERS )面世后,贵金属基底的引入将拉曼检测灵敏度提升了百万倍,克服了传统拉曼光谱与生俱来的信号微弱等缺点,使得拉曼检测在食品安全、环境监测、生命科学等领域得到广泛应用,并迅速成长为最为灵敏的表面物种现场谱学检测技术之一。然而,人们欣喜的同时却遗憾地发现, SERS 仅在金、银、铜等贵金属的粗糙表面才具有高活性,即需依赖贵金属表面电磁增强的 “ 热点 ” 效应,基底的选择十分有限;且实际应用中这种精细调制的材料结构易受环境因素干扰,稳定性差强人意。事实上,探索新型、高性能的非金属基底一直是 SERS 技术中最重要的研究方向之一。尤其近年来半导体化合物被证实具有 SERS 活性,其丰富的种类与化学组成引起人们极大的兴趣,但此类化合物作为 SERS 基底普遍较低的增强因子似乎成为难以突破的科研瓶颈。我们知道,基底材料所表现出的 SERS 性能来源于探针分子与其表面的相互作用,包括电磁增强( EM )与化学增强( CM )两种方式。通常认为金属材料中以电磁增强为主,而半导体化合物表面化学增强则起决定作用。正因为机制不同,半导体材料用作 SERS 基底的设计应遵循完全不同于现有的贵金属材料的研究理念。   最近,中国科学院苏州纳米所赵志刚研究员团队成功地发现了氧分子可以作为开启半导体化合物 SERS 性能宝藏的钥匙,即利用化合物化学组成可调的特点,巧妙地通过氧元素调控过渡金属化合物的化学计量组成或表面晶格氧浓度,来增强非(弱) SERS 活性材料表面物种的信号。   在此学术思想指导下,该研究团队首先选择自身富氧缺陷的 W 18 O 49 海胆状纳米粒子作为 SERS 基底,成功获得了高灵敏度和低探测极限的优异 SERS 性能。这种首次作为 SERS 基底的半导体材料对 R6G 分子的检测极限可低至 10 -7 M ,通过还原气氛( H 2 、 Ar )处理的方法进一步改变 W 18 O 49 的表面氧缺陷浓度,成功地将材料的 SERS 增强因子提升至 3.4 × 10 5 ,是现已报道的性能最为优秀的半导体 SERS 基底材料之一,并已接近无 “ 热点 ” 的贵金属材料。相比之下,化学计量比 WO 3 几乎没有 SERS 活性,这说明氧缺陷对于半导体氧化物的 SERS 性能有着至关重要的作用。   既然从晶格中拖出氧对材料 SERS 如此重要,那么反过来向晶格中插入氧又将如何?带着这个疑问,赵志刚研究员团队选择了硫化钼( MoS 2 )这种本身 SERS 性能微弱的硫族半导体材料,通过取代和氧化两种方式方便地实现其晶格中氧的插入。结果证实,适量的氧插入可使硫化钼的 SERS 活性提升 100,000 倍,但过量的氧掺杂会导致 SERS 活性大幅下降。此外,通过这种氧插入方法,硒化钨、硫化钨、硒化钼等多种化合物的 SERS 性能均可获得大幅增强,也就是说这种晶格氧调控的手段在提升半导体 SERS 性能方面颇具普适性潜力。   至此,晶格中的 “ 氧缺陷 ” 与 “ 插入氧 ” 对半导体 SERS 的增强作用已被统一,而理论计算结果更是指向了同一结论。该团队研究人员将化学增强的理论模型应用于半导体 - 有机分子体系,发现半导体材料晶格氧的增减可作为调控其能级结构的有效手段;其中 “ 氧缺陷 ” 会引入深能级作为电子跃迁的 “ 弹跳板 ” ,而 “ 插入氧 ” 将直接增加带边附近的电子态并伴随着禁带变窄;这些都将显著增加激光激发下半导体中电子跃迁的可能,并进一步通过振动耦合( Vibronic Coupling )作用于半导体 - 有机分子之间的电荷跃迁( Charge Transfer ),影响基底表面所吸附有机分子的极化张力,从而增强其拉曼光谱响应。   以上工作证实了恰当地调制半导体化合物中的晶格氧,可作为显著提升其 SERS 性能的一种有效手段,突破常规 SERS 技术中贵金属基底的局限性,进一步拓宽半导体化合物作为基底材料在 SERS 检测中的应用范畴。系列研究成果相继以 “Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies” 与 “Semiconductor SERS enhancement enabled by oxygen incorporation” 为题于 2015 年 7 月 17 日、 2017 年 12 月 8 日在 Nature Communications 在线发表。 ( DOI:10.1038/ncomms8800& DOI: 10.1038/s41467-017-02166-z)   研究工作得到国家自然科学基金 (51372266, 51572286, 21503266, 51772319, 51772320) 、 江苏省相关人才计划 (BK20160011) 、 中国科学院青年创新促进会 等的资助和支持。