《国家纳米中心红外非易失性存储器研究获进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-05-04
  •  二维层状半导体材料是层内以强的共价键或离子键结合而成,而层与层之间依靠弱的范德华力堆叠在一起的一类新型材料。通常其表面没有化学悬键,这个特征使载流子免于表面粗糙度及陷阱态的影响,从而能够获得较高的载流子迁移率。但超薄的特性导致其具有小的吸收截面,二维的尺寸限制和低的静电屏蔽导致二维材料具有大的激子束缚能,而且强烈的库伦相互作用也会通过俄歇过程增加光生电子空穴在缺陷处的复合。这些弊端都限制了二维材料在光电探测上的应用。中国科学院国家纳米科学中心何军课题组将范德华外延法应用于光电性能优异的非层状硫族半导体材料二维化生长,从六方晶体到立方晶体结构,从单组分到复杂的三组分体系,分别实现了Te、Pb1-xSnxSe、PbS等具有不同晶体结构的非层状材料的二维化及阵列结构(Advanced Materials. 2017, 29, 1703122;Advanced Materials. 2016, 28, 8051-8057;Nano Letters. 2015, 15, 1183-1189)。在此研究基础上,为了解决二维层状材料的弊端,并利用非层状硫族半导体高效的光吸收性能。通过范德华外延实现了边缘接触的层状非层状范德华异质结:硫化铅/二硫化钼(PbS/MoS2)和硫化铅/石墨烯(PbS/graphene)异质结(Nano Letters. 2016, 16, 6437-6444; Advanced Materials. 2016, 28, 6497–6503)。窄带隙的PbS与二维材料形成内建电场使光生电子空穴空间分离,有效阻止了二维材料中光生电子空穴的快速复合。另一方面二维材料的高迁移率极大地提高了光电导增益,实现了高性能的红外探测器件的制备。

      在二维半导体材料可控生长及其电子和光电子性质的研究基础上,何军课题组进一步实现了一种基于二维材料MoS2/PbS范德华异质结的红外非易失性存储器。该器件能把红外光信号高效地转换为电信号,而且能实现稳定存储。这种器件不仅展现出了极高的红外光探测性能:光响应度超过107安培每瓦,光增益超过1011,探测率超过1015琼斯,而且具有极其稳定的光存储性能,存储时间超过104秒。此外该存储器可以通过脉冲栅压擦除,经过2000次循环仍能保持稳定。结合理论模型与实验数据,研究人员发现光存储机制来源于PbS中光生电子注入MoS2,界面势垒ФR阻止MoS2里面的电子反向注入PbS。光生空穴被局域在PbS价带或者缺陷产生光栅作用,诱导电子浓度大约2.4×1024cm-3,出现光存储。加脉冲栅压MoS2电子浓度增加,MoS2中电子通过量子遂穿注入PbS与局域空穴复合,光存储被擦除。当脉冲栅压从10增加到100V,栅压诱导的电子从0.6×1024 增加到2.5×1024 cm-3 ,这个值跟光栅诱导的电子浓度非常接近。以上实验观测与理论模型(随脉冲栅压增加MoS2中注入到PbS中的电子浓度增加)相一致。850, 1310 和1550 nm 这三个波段是光纤损耗比较低的波段,被广泛应用于光纤通讯,该光存储器能有效将这三个光纤通讯波段的光信号转换为电信号并实现稳定存储。这种应用于红外通讯波段的非易失性存储器目前是首次报道。这项研究成果为光电子存储以及其逻辑电路提供了新思路,相关研究成果日前以Nonvolatile infrared memory in MoS2/PbS van der Waals heterostructures 为题发表在science advances(Sci. Adv. 2018; 4 : eaap7916)上。

      该研究工作得到了国家相关人才计划、科技部重大科学研究计划等的支持。 

相关报告
  • 《国家纳米中心基因沉默研究获进展》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-11-12
    • 近日,中国科学院国家纳米科学中心研究员丁宝全课题组在基于核酸自组装的基因沉默系统用于肿瘤治疗研究中取得进展,相关研究成果以Branched Antisense and siRNA Co-assembled Nanoplatform for Combined Gene Silencing and Tumor Therapy为题,发表在Angewandte Chemie International Edition(DOI: 10.1021/anie.202011174)上。 近年来,基因沉默系统在肿瘤治疗领域的研究已被广泛报道,主要是通过各类阳离子脂质体,高分子聚合物和无机纳米颗粒等为载体递送反义核酸或小干扰RNA,用以沉默肿瘤相关基因,达到抑制肿瘤生长的目的。基于碱基互补配对的核酸自组装体系可被设计成具有不同尺寸和形状的纳米结构,同为核酸的各类基因治疗药物也可以通过碱基互补配对的方式进行共组装,从而使得构建基于核酸自组装的基因治疗系统成为可能。 前期工作中,丁宝全课题组在利用多功能核酸纳米结构递送基因治疗药物领域已获系列进展(Journal of the American Chemical Society 2019, 141, 19032;Angewandte Chemie International Edition 2018, 57, 15486;Nano Letters 2018, 18, 3328)。核酸自组装结构具有尺寸可控、可定点修饰和生物相容等特点,是一类优秀的药物载体。为进一步提高对核酸分子的利用效率,构建一类由核酸药物组成且具有药物载体功效的基因治疗型复合纳米体系较为重要。 在前期研究基础上,丁宝全课题组通过引入小分子偶联的支链核酸药物实现对反义核酸和小干扰RNA的共组装,构建一类既是载体也是药物的基因治疗型核酸纳米复合物用于对肿瘤的联合治疗。研究利用环形的超分子β环糊精为内核经无铜点击反应共价偶联反义核酸序列,制备支链反义核酸(7AS)。同时,对经典的小干扰RNA的3’末端进行延伸,构建出一段能够同反义核酸进行部分碱基互补配对的RNA序列作为碱基识别的连接子(siRNAL)。将支链反义核酸同3’末端延伸的小干扰RNA进行碱基识别并共组装得到核酸纳米复合物。通过超分子体系的主客体识别机制,在基因治疗型核酸纳米复合物中引入金刚烷修饰的靶向性叶酸配体和内涵体逃逸肽,实现对靶标细胞的选择性内化和随后的内涵体逃逸过程。在细胞内RNase H酶的识别和切割作用下,逐步释放支链反义核酸和小干扰RNA,用以对肿瘤相关基因PLK1编码的mRNA进行多位点识别和切割,实现联合的基因治疗,抑制肿瘤细胞的增殖。在小鼠活体水平,该类基因治疗型核酸纳米复合物表现出明显的肿瘤富集效果以及低免疫原性。在1.2 mg/kg的给药剂量下,观测到显著的对肿瘤相关基因PLK1的下调水平,抑制肿瘤的生长。该研究通过构建支链核酸药物,利用核酸自组装和超分子主客体识别,制备具有靶向识别能力和对细胞内特定生物分子产生响应的基因治疗型核酸纳米复合物,实现对靶标基因的精准治疗,为恶性肿瘤等疾病的诊疗提供新的研究策略。 论文第一作者为国家纳米中心副研究员刘建兵,论文通讯作者为丁宝全和刘建兵。研究工作得到国家自然科学基金、中国科学院战略性先导科技专项、中国科学院前沿科学重点研究计划等的支持。
  • 《国家纳米科学中心金纳米棒材料组装研究取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:万勇
    • 发布时间:2017-12-07
    •   微纳加工方法主要分为“自上而下”和“自下而上”两种基本类型。前者是目前广泛应用于微纳加工领域的主流技术,但其由于受到物理极限的制约,一般加工分辨率在几十纳米量级上。后者则可在更小的尺度(包括分子尺度)上实现加工,被认为是一种突破物理限制的有效途径。然而,“自下而上”的组装方法由于科学认知和实验技术的不足,导致其在低缺陷、大面积、组装过程、组装结构等四个方面存在持续的挑战。相对而言,组装结构面临的障碍最大。这其中,一个最重要问题是如何实现组装对称性的可调控。组装对称性可调控对于组装结构多样性和组装体功能的丰富无疑是非常重要的。一般而言,由于形状互补性,组装结构对称性受到组装单元的形貌限制,四方单元易于形成四方密排结构,而球型则形成六方密排对称结构。由于在组装动力学过程中组装单元间的复杂力平衡和热力学最小原理的要求,打破形状依赖的组装结构对称性似乎是一个难以实现的目标。   国家纳米科学中心和中国科学院纳米科学卓越中心刘前课题组与吴晓春课题组、邓珂课题组以及美国科罗拉多大学Ivan I. Smalyukh课题组合作,通过引入一种新概念的主导控制力,首次实现了纳米金棒的四方对称性组装,一举突破了一直以来八面体金棒只能是形状依赖的六方对称结构的实验结果。这一结果也在八面体银和钯纳米棒上得到了实现,展示了这种方法的普适性。多尺度模拟计算进一步揭示这种控制力主导了非形状依赖的组装过程,并很好的解释了四方对称比六方对称具有更高的热力学稳定性的实验结果。这种方法开辟了一条打破形状依赖组装对称性的新途径,为组装结构的多样性和纳米材料组装结构的可设计、可控提供了了有力工具,将为推动纳米组装技术的进步提供助力。   该工作是刘前课题组前期研究(Nanoscale, 2014, 6, 3064;Langmuir 2013, 29, 6232;Chem. Commun., 2012, 48, 2128; Langmuir 2011, 27, 11394)的进一步拓展,已于 11月10 日在线发表在《自然·通讯》(Nature Communications 2017, 10, 13743)。文章链接:https://www.nature.com/articles/s41467-017-01111-4。该工作获得了国家重点研发计划纳米科技重点专项、中国科学院战略性先导科技专项A、国家基金委和欧盟项目的支持。