《氧化大气中甲烷的技术对气候没有帮助。》

  • 来源专题:水与大气环境治理
  • 编译者: 胡晓语
  • 发布时间:2025-06-05
  • 最近的一项提案试图向大气中注入过氧化氢,坚持认为它既可以氧化甲烷,同时还能改善空气质量。然而,新的研究结果表明,这个提案的方法是非常低效的,不会从大气中去除任何有意义的甲烷,它解决不了全球变暖问题。与此同时,冬季空气质量差的地方,颗粒物污染可能会变得更严重。


  • 原文来源:https://www.sciencedaily.com/releases/2025/01/250117171311.htm
相关报告
  • 《Nature:融化的冰盖将大量甲烷释放到大气中》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2019-02-18
    • 最近发表在《自然》(Nature)杂志上的一篇论文结果显示,覆盖广阔湿地的冰盖可以通过冰下河流将大量甲烷释放到大气中。目前,用于预测全球变暖的全球甲烷预算中忽略了冰盖,但这可能导致冰盖快速退缩期间温室气体浓度上升。 由布里斯托大学领导的国际研究团队在格陵兰冰盖旁边扎营了三个月,团队成员还包括英国国家海洋中心(NOC)的工程师。在那里,他们使用新型传感器测量了从冰盖流出的融水中所含的6吨甲烷,并在NOC进行了测试和验证,以便在具有挑战性的冰冷环境中进行部署,该体积与同期100头奶牛释放的甲烷量相当。 来自NOC的论文作者Alex Beaton博士提到,这项研究表明,在春季和夏季,冰下融水不断将格陵兰冰盖下方的甲烷冲刷到大气中。在冰盖下产生的大部分甲烷似乎能够在被氧化成二氧化碳之前通过快速流动的河流逃逸到大气中。该研究证明了原位化学传感器的高分辨率数据在帮助限制生物地球化学循环方面可发挥的关键作用。 卡迪夫大学的共同作者Elizabeth Bagshaw博士补充道,使用新传感器技术为研究提供了一个窗口,可以看到这个以前看不见的冰川环境。连续测量融水使研究人员能够更好地理解这些迷人系统的工作原理,以及它们如何影响地球的其他部分。 虽然先前在格陵兰冰芯和南极冰下湖中检测到了一些甲烷,但这是第一次在大型冰盖集水区春夏季生产的融水中,研究从冰盖床连续冲刷而逃逸到大气层的甲烷。来自布里斯托尔地理科学学院的主要作者Guillaume Lamarche-Gagnon提到,同样令人震惊的是,他们发现了广泛冰下微生物系统的明确证据。虽然他们知道产生甲烷的微生物在冰下环境中可能很重要,但它们真正具有多大的重要性和广泛性是值得商榷的。现在清楚地看到,生活在数公里冰下的活跃微生物不仅存活,而且可能影响地球系统的其他部分。这种冰下甲烷基本上是这些孤立栖息地生命的生物标志物。 大多数关于北极甲烷来源的研究都集中在永久冻土上,因为这些冷冻土壤往往含有大量的有机碳,当它们因气候变暖而解冻时可能转化为甲烷。这项最新研究表明,冰盖床也是大气中的甲烷来源。 领导调查的布里斯托尔卡博特环境研究所所长Jemma Wadham教授提到,一个关键的发现是,冰下产生的大部分甲烷可能会在大型快速流动的河流中逃离格陵兰冰盖。氧化成二氧化碳是甲烷气体的典型命运,而这通常会降低其温室效应。 研究人员表示,南极洲拥有地球上最大的冰块,本研究结果将聚光灯转向了南方。Lamarche-Gagnon先生还提到,假设在南极冰盖下面比在北极冰块下面拥有更多若干数量级的甲烷。就像在格陵兰岛所做的那样,现在是时候在理论上加上更强大的数字了。 该研究由布里斯托尔大学(英国)、查尔斯大学(捷克)、英国国家海洋学中心、纽卡斯尔大学(英国)、多伦多大学(加拿大)、布鲁塞尔自由大学(比利时)、卡迪夫大学(英国)和康斯伯格海事公司(德国)联合开展。它由英国自然环境研究委员会(NERC)资助,其中包括利华休姆信托基金、捷克科学基金会、加拿大自然科学和工程研究委员会以及加拿大魁北克省自然与技术基金会的额外资金。 (於维樱 编译)
  • 《分子筛催化甲烷选择性氧化研究获进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-02-23
    • 中国科学院精密测量院徐君和邓风研究团队联合英国卡迪夫大学等合作者,在甲烷选择性氧化研究方面取得重要进展。开发了金(Au)负载的ZSM-5分子筛(Au/ZSM-5)催化剂,实现了在氧气条件下催化甲烷高选择性氧化为甲醇和乙酸的催化反应过程,并对其催化机制进行了深入的研究。相关研究成果发表在《自然—催化》上。 作为最清洁、最丰富的天然碳资源,甲烷广泛分布于天然气、页岩气、煤层气、甲烷水合物等中,可以作为生产高价值化学品的重要C1资源。因甲烷储藏的地区偏远,因此在开采现场将甲烷转化为可运输的含氧化合物(甲醇、甲酸、乙酸等)对甲烷的高效利用具有重大意义。 然而,由于甲烷的 C-H 键能较大,通常需要苛刻的条件(高温和高压)才能将其转化,如工业上高能耗的间接转化过程先将甲烷转化成合成气(CO + H2),再转化为高附加值的产物。人们一直追求能将甲烷直接部分氧化为高附加值化学品,由于所生成的含氧化合物的性质比甲烷更活泼,它们通常更容易过度氧化为CO2等副产品。因此,甲烷选择性氧化被称为是催化中的“圣杯”反应之一。寻求能够在温和条件下具有工业前景的甲烷选择性氧化路线引起了学术界和工业界的极大关注。 针对上述问题,研究人员开发了金(Au)负载的 ZSM-5沸石分子筛 (Au/ZSM-5),纳米颗粒 Au 作为氧化中心。该催化剂可以在没有共还原剂(H2或CO)的条件下,在 120-240°C 的温度范围内利用O2实现甲烷选择性氧化生成甲醇和乙酸的反应,并阐明了反应机制。 研究人员利用核磁共振(NMR)方法对反应产物含量进行了定量分析,发现在较短反应时间内可获得7.3 mol/molAu/h 的最大含氧化合物产量,与常规Cu负载分子筛催化剂只能催化生成C1产物不同,该体系中可生成乙酸等 C2 氧化产物,这表明Au-ZSM-5 催化剂上具有不同的催化反应机制。 研究人员通过二维1H-13C相关谱NMR实验结合12C和13C同位素示踪技术深入研究了甲烷转化机制,发现催化剂表面的Au纳米粒子能够促进氧气活化进生成活性氧而与甲烷发生,该反应涉及在固体催化表面上活性物种(甲基、过氧甲基、乙酰基等)的生成与转化过程,而不仅仅是甲烷在溶液相的氧化反应。 更重要的是该催化剂能只使用 O2 作为氧化剂来生成C2含氧化合物,而在其他贵金属(如Rh和Ir)改性沸石催化剂上通常需要CO作为共反应物(还原剂)。此项工作不仅为多相催化剂实现氧气条件下甲烷选择性氧化反应提供了坚实的实验证据,也为甲烷选择性转化这一催化领域的“圣杯”反应提供了新的研究思路。 相关研究成果近期在《自然—催化》在线发表。中国科学院精密测量院为该工作的第一完成单位,精密测量院副研究员齐国栋为第一作者,研究员徐君与卡迪夫大学教授Hutchings为通讯联系人。该项研究工作得到了国家自然科学基金委、中国科学院、湖北省科技厅的支持。 相关论文信息:https://doi.org/10.1038/s41929-021-00725-8