《功能玻璃关键材料体系发展战略研究》

  • 编译者: 欧冬智
  • 发布时间:2024-08-26
  • 功能玻璃材料是无机非金属材料的重要组成,主要包括电子信息玻璃、新能源玻璃、特种玻璃等,是信息显示、半导体、新能源、深海、深空等战略性新兴产业的基础性支撑性材料,已成为我国建设智能社会、低碳社会的重要基石。文章按照主干化、体系化研究思路,围绕电子信息玻璃、新能源玻璃、特种玻璃等关键材料的技术、产业、支撑等体系化发展要素,梳理了国外功能玻璃领域先进国家的发展现状,结合我国的发展现状,凝炼了我国功能玻璃关键材料发展面临的主要问题,提出了我国功能玻璃关键材料的发展思路与近期、中期、远期的发展目标,凝练了我国功能玻璃关键材料领域的重点技术发展方向。

相关报告
  • 《材料发展报告》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:yangrui
    • 发布时间:2016-11-15
    • 内容提要: 材料科技是现代世界竞争力的基石,是各国科技开发的焦点之一,当今世界综合竞争水平的提高离不开材料科技的支撑。《材料发展报告》梳理了材料科技发展的历史及其对人类发展的贡献,重点分析了美国、日本、欧盟、德国、英国、法国、加拿大、韩国等的新的材料科技战略和政策,从材料科技投入、主要战略、政策计划、产业化政策等方面进行分析研究。根据关键科技问题结合当前材料科技发展,选择稀土材料、碳纤维材料、核能材料、超导材料、生物降解材料、光电材料、新型半导体材料、生物医用材料等重点材料进行前沿科技发展趋势分析。中国科学院武汉文献情报中心、材料科学战略情报研究中心编著的《材料发展报告》可供各级行政和科技部门、发展规划部门、科技政策和管理研究部门,以及高校和研发机构研究人员、各材料行业企业的有关人士阅读参考。 目录: 前言 第一章当今世界材料科技发展概况/1 第一节材料的定义和分类/2 第二节材料的发展历史和作用/4 第三节世界材料科技竞争/10 第二章主要国家材料战略和发展趋势/21 第一节美国材料战略和发展趋势分析/22 第二节日本材料战略和发展趋势分析/37 第三节欧盟材料战略和发展趋势分析/64 第四节德国材料战略和发展趋势分析/77 第五节英国材料战略和发展趋势分析/94 第六节法国材料战略与发展趋势分析/101 第七节加拿大材料战略和发展趋势分析/112 第八节韩国材料战略和发展趋势分析/123 第三章若干战略性材料发展研究/139 第一节稀土材料发展研究/140 第二节碳纤维科技发展研究/176 第四章若干关键材料发展趋势分析/210 第一节核能材料发展趋势分析/211 第二节超导材料发展趋势分析/229 第三节生物降解材料发展趋势分析/240 第四节光电材料发展趋势分析/248 第五节新型半导体材料发展趋势分析/261 第六节生物医用材料发展趋势分析/280 第五章结语/294 第一节材料领域未来发展展望/295 第二节我国材料领域面临的挑战/297 参考文献/299
  • 《欧洲能源研究联盟发布核能材料战略研究议程》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-08-05
    • 近期,欧洲能源研究联盟(EERA)发布《可持续核能材料战略研究议程》 ,确定了欧盟将要开展的核能材料研究路线,以确保为欧盟第四代核反应堆的设计、许可、建设和安全长期运行提供合适的结构材料和燃料材料,促进第四代核反应堆的商业部署。本次议程提出了重点开展结构材料和燃料材料两个主题研究,具体内容如下: 一、反应堆结构材料研究 1、材料的性能机理研究 (1)金属材料的高温力学行为和性能衰退研究:实验和模拟结合研究金属材料(奥氏体钢、马氏体铁素体双相钢、镍基合金等)的高温蠕变特性,分析材料的蠕变机制,金属材料的循环塑性和疲劳测试研究,并收集相关实验数据;开展金属材料的蠕变-疲劳损伤及断裂机制分析;金属材料高温强度研究。 (2)冷却剂和结构材料的环境匹配性研究:针对液态金属(如奥氏体钢)冷却,开展液态金属的腐蚀核防护技术研究;液态金属脆裂失效机制研究。 (3)结构材料辐射效应:针对结构材料的辐射损伤问题如辐照肿胀与蠕变现象、辐照硬化与脆化、辐照疲劳与蠕变相互作用等开展系统研究,以研究出相关的防护技术提升材料的使用寿命。 (4)焊接件质量评估:研究焊接件在反应堆的温度、压力和强辐照条件下的稳定性和相容性问题,提升焊接工艺,改进焊接质量。 2、先进结构材料的模型和表征 (1)结构材料的微结构和微化学演变研究:对高温高压高辐射环境下材料的微观组织、结构变化过程(如辐射硬化和脆化、辐射诱导的材料组分分离和沉积等)进行表征和研究。 (2)辐照后的材料机械行为研究:利用高能离子束模拟研究,了解和预测辐射损伤诱发的结构材料物理机械性能下降(如循环塑性和疲劳、蠕变-疲劳损伤相互作用)的复杂机械行为。 (3)材料断裂机理研究:开发计算机模型,动态拟合材料断裂整个过程,探究材料起裂、裂缝传播作用机理。 (4)陶瓷/复合材料性能研究:利用先进的成像和计算机模拟技术对反应堆使用的陶瓷材料/复合材料的耐高温、耐腐蚀、耐辐射的物理化学特性进行测试研究。 3、先进结构材料研发 (1)结构材料制备工艺:开发更加高效、简洁、经济的结构材料制备工艺(如可以引入3D打印技术),减少材料的制造周期和成本。 (2)奥氏体钢性能改善:通过添加少量的添加剂,减少点缺陷,开发出辐照肿胀和热膨胀系数更低的奥氏体钢,降低材料的抗辐照肿胀性。 (3)马氏体铁素体双相钢(F/M钢):开发新的制备工艺,制造出具备耐高温、良好的抗辐照肿胀性的氧化物弥散强化F/M钢;开发新的氧化物弥散强化F/M钢焊接工艺;研发新的防氚渗透耐蚀绝缘涂层材料。 (4)SiC核包壳材料的开发和性能分析:开发高性能的SiC核包壳材料,发展标准化的测试手段(如利用扫描电镜、透射电镜、热导率表征手段等)来研究中子辐照SiC核包壳材料缺陷分析;探究材料的抗高温氧化性能和抗腐蚀性。 (5)耐火合金材料:研发新的Mo元素掺杂的V-Cr-Ti合金熔炼制备技术,提升材料的高温强度(耐火性)、抗中子辐照肿胀、耐腐蚀特性等。 (6)新型核结构材料:研发新型、能够抵抗更高温度和更大辐照剂量的多元高熵合金材料,探索不同元素组合对材料性能的影响;通过对材料组分和材料微结构的调控,改善新型MAX相结构材料(即新型三元陶瓷材料)的耐腐蚀、抗辐照和耐高温性能。 二、反应堆燃料材料研究 1、材料性能机理研究 (1)高熔点核燃料材料:开发熔点更高、物理化学性质稳定的新型燃料棒材料,提升安全裕度。 (2)原子传输和微结构演化研究:探究辐照环境下,核燃料点缺陷的形成、扩散行为机理研究;探究在核反应堆环境中材料微结构的演变规律,及其对结构稳定性、力学性能特性影响。 (3)裂变产物研究:针对反应堆本体一回路裂变产物(如氦、氪、氙等放射性气体以及其他放射性微粒等)开展产物的微观行为的多尺度研究,探明裂变产物的微观行为机制; (4)核燃料包壳相互作用研究:由于包壳面临核燃料芯体,包壳内壁受到裂变气体压力、腐蚀和燃料肿胀以及吸氢致脆等包壳与芯块的相互作用等危害,任其发展可导致包壳破损,引起安全问题,因此需要对此开展研究,探索解决方案。 2、核燃料材料的模型和表征 (1)核燃料熔点研究:利用激光加热手段来研究不同组分对核燃料熔点的影响;用量热法研究各种非化学计量比的燃料样品的熔点;利用仿真模拟方法从原子尺度计算不同组分对材料熔点的影响。 (2)辐射缺陷和原子输运:综合利用各类表征手段,如量热法、电导率测试、拉曼光谱等,研究各种非化学计量比核燃料材料辐照点缺陷形成和扩散机理研究;利用仿真模拟方法从原子尺度计算不同组分对材料辐射缺陷形成的影响。通过热量测试,研究辐照增强扩散效应的研究。 (3)裂变产物研究:通过热量测试,对不同组分核燃料裂变产物(如氦、氪、氙等放射性气体以及其他放射性微粒等)的辐照增强扩散行为进行研究;开发相关的仿真模型研究裂变产物的热力学行为。 (4)机械特性研究:开发相关仿真模型从原子尺度研究辐照肿胀和蠕变对材料机械性能的影响,并开展相关的实验研究。 3、先进核燃料材料开发 (1)氧化物核燃料:开发新工艺,通过组分调控优化进而实现对微结构的调控,制备高性能的钚铀混合氧化物核燃料,提高资源的利用率,解决核燃料资源不足的问题。 (2)新型燃料开发:开发新型的氮化、碳化铀系核燃料,并通过完整的物理、化学、机械等测试手段对新材料性能进行全面的表征。研究新燃料和包壳及冷却剂之间的相互作用。开发热化学模型,研究核燃料氧化机制。关注熔盐反应堆,开发新型熔盐以更有效地加载核燃料和发挥冷却效果(熔盐自身既是加载核燃料的载体,同时也是冷却剂)。