《Cell | 鉴定脾脏痛觉神经元通路及其促B细胞免疫效应》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-05-26
  • 2024年5月20日,军事科学院军事医学研究院李慧艳、张宇程、周涛共同通讯在Cell发表题为Innervation of nociceptor neurons in the spleen promotes germinal center responses and humoral immunity的文章 ,揭示了一种新的调节体液免疫的神经免疫连接。通过细致的组织清理和先进的成像技术,作者证明痛觉神经元广泛支配脾脏,其纤维沿着血管到达B细胞区。这些伤害感受器主要来源于左侧T8–T13背根神经节(DRG),与脾脏形成特定的神经连接。

    在免疫反应后,切除痛觉神经元导致生发中心(GC)B细胞、脾浆细胞和抗原特异性抗体产生显著减少,强调了这些神经元在促进脾GC反应和体液免疫中的关键作用。相反,激活左侧(脾脏同侧)胸椎T8–T13 DRG中的痛觉神经元显著增强了GC反应和抗体滴度。从机制上讲,作者揭示了由抗原诱导的前列腺素E2(PGE2)在脾脏中积聚引发的一个引人注目的级联反应,该反应激活痛觉神经元以释放神经肽降钙素基因相关肽(CGRP)。CGRP反过来通过其异二聚体受体CALCRL-AMP1作用于B细胞,激活cAMP信号通路并促进GC反应的早期阶段。值得注意的是,在免疫的初始阶段外源性给予CGRP增强了GC反应,而CGRP受体拮抗剂或B细胞中Calcrl的条件敲除损害了体液免疫。

    最后,作者证明了饮食中的辣椒素,作为一种天然的TRPV1激动剂,以痛觉神经元依赖的方式增强了脾脏GC反应和抗流感免疫。喂食含辣椒素饮食的小鼠表现出GC B细胞、脾浆细胞和流感特异性抗体的增强,导致病毒载量减少,肺部病理减轻,并提高了病毒攻击后的存活率。而当切除左侧T8–T13 DRG中的痛觉神经元时,这种保护作用被消除,强调了伤害感受器激活和体液免疫增强之间的因果关系。

    总的来说,这项开创性的研究揭示了一种痛觉神经元通过DRG-脾脏神经连接调节体液免疫的途径。作者剖析了这种神经免疫互作背后的细胞和分子机制,为靶向痛觉神经系统以增强宿主防御或治疗B细胞介导的自身免疫性疾病提供了令人信服的理由。这项工作为利用神经和免疫系统之间的双向通信来调节体液免疫和开发新的治疗策略开辟了新的途径。

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(24)00453-7
相关报告
  • 《Cell | 多巴胺神经元内源TNF-NF-κB-p53导致细胞凋亡》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-06-15
    • 2024年6月11日,斯隆—凯特林癌症研究所Lorenz Studer、Tae Wan Kim共同通讯在Cell发表题为TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons的论文,发现了一种限制人类多能干细胞(hPSC)来源的多巴胺神经元移植后存活的关键途径,解决了开发有效的帕金森病细胞疗法的主要障碍。 通过体内CRISPR-Cas9筛选,他们确定肿瘤抑制基因p53是植入后多巴胺神经元死亡的关键调节因子。值得注意的是,在hPSC来源的多巴胺神经元中敲除p53导致其移植后存活率的显著提高,突显了该基因在介导细胞死亡中的关键作用。研究人员仔细分析了p53介导的多巴胺神经元死亡的时间动力学和相关的宿主反应。有趣的是,他们观察到大约30-40%的移植多巴胺神经元在移植后24小时内迅速诱导p53表达,随后出现凋亡,在72小时达到峰值。与此同时,以小胶质细胞和星形胶质细胞募集为特征的宿主免疫反应达到了顶峰,这表明控制多巴胺神经元存活的内在和外在因素之间存在复杂的相互作用。 深入研究分子机制,该研究揭示了TNF-α-NF-κB信号通路是p53依赖性细胞凋亡的上游调节因子。值得注意的是,在体外用重组TNF-α治疗诱导了p53表达和随后的多巴胺神经元死亡,这一现象可以通过与临床批准的TNF-α抑制剂阿达木单抗(adalimumab)联合治疗有效阻断。这一发现不仅确立了TNF-α-NF-κB信号传导和p53诱导之间的因果关系,而且突出了adalimumab在提高多巴胺神经元存活率方面的治疗潜力。 为了全面了解与存活和凋亡的多巴胺神经元相关的分子特征,研究人员采用了单细胞RNA测序分析。有趣的是,他们发现了表现出存活或凋亡特征的不同簇(cluster),后者的特征是p53下游基因的上调和被称为“去分化”的祖细胞样状态。相反,存活的簇表现出应激反应和存活标记物(如JUN)的高表达,突显了多巴胺神经元移植后命运的复杂分子格局。值得注意的是,这项研究表明,移植的多巴胺神经元本身,而不是宿主大脑,是触发了一连串的细胞死亡事件的TNF-α的最初来源。将多巴胺神经元移植到TNF-α敲除小鼠体内的实验进一步证实了这一发现,该实验表明宿主来源的TNF-α对于决定移植物存活率是基本无关的。 为了克服与基因报告系相关的挑战并促进临床转化,研究人员进行了广泛的表面标记物筛选,鉴定了CD49e和CD184标记物的组合:该组合能够在不需要基因修饰的情况下纯化有丝分裂后多巴胺神经元。引人注目的是,将这些纯化的多巴胺神经元与阿达木单抗联合注射,显著提高了它们的存活率、功能植入和易受攻击的A9多巴胺神经元亚型的富集——这对帕金森病的运动恢复至关重要。在临床前PD小鼠模型中,阿达木单抗治疗和纯化的有丝分裂后多巴胺神经元移植物的组合显示出强大的功能恢复和纹状体的广泛神经再支配。组织学分析显示,与对照组相比,阿达木单抗治疗组中存活的多巴胺神经元总数、移植物大小和ALDH1A1+A9型神经元的比例显著增加。 总之,这项开创性的研究不仅揭示了移植后多巴胺神经元死亡的复杂分子机制,还提出了一种提高其存活率和功能植入的临床相关策略。通过使用FDA批准的TNF-α抑制剂和基于表面标记物的纯化方法,研究人员为开发更有效、更安全的PD细胞疗法铺平了道路。这些发现对利用hPSC来源的多巴胺神经元的临床试验具有深远的意义,并可能扩展到其他被有限的体内存活率限制的细胞治疗应用。
  • 《《神经元》:HIV入侵免疫细胞的门户,居然也是神经退行性疾病发病的关键!》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-05-24
    • 错误折叠蛋白质在大脑中聚集,是神经退行性疾病的一个共同特征。例如亨廷顿(HTT)蛋白和tau蛋白形成的大量聚集体会导致神经元退化甚至死亡,进而引发亨廷顿病(HD)等症状[1]。   实际上,细胞自身能够通过自噬来清除有毒物质。但研究表明,在神经退行性疾病中,神经元的自噬功能被破坏,导致神经元无法及时有效地丢弃这些有害的错误折叠蛋白质[2]。因此,为确定治疗靶点,需要了解神经元自噬抑制的潜在机制。目前,大多研究关注于神经元以细胞自主性机制来调节自噬,而忽视了大脑中其它类型细胞是否通过旁分泌信号分子来影响这一过程。   近日,一篇发表在《神经元》期刊上的文章则提出,激活的小胶质细胞参与调控神经元的自噬,并从现成的HIV药物中找到了相应的解决方案[3]。   英国剑桥大学的David C. Rubinsztein带领他的团队发现,在神经退行性疾病中,活化的小胶质细胞会分泌趋化因子CCL3、CCL4、CCL5,这些因子与神经元表达的CCR5结合后,通过mTORC1信号通路来抑制神经元自噬。   使用CCR5拮抗剂马拉韦罗(Maraviroc)——一种已由FDA获批用于HIV治疗的药物,可以缓解神经退行性疾病小鼠的异常蛋白质聚集,改善认知。 小胶质细胞是大脑的常驻免疫细胞,具有维持大脑结构和功能、参与神经元信号传递、免疫调节和参与大脑损伤修复等作用。   在亨廷顿病和阿尔茨海默病的前驱期,小胶质细胞转变为促炎状态并被激活,会分泌一些趋化因子或细胞因子,同时神经元中也表达有相应受体。这些因子与神经元中受体之间的相互作用可能会激活神经毒性通路,但尚不清楚是否调节神经元自噬。   在这项研究中,David C. Rubinsztein等人首先在体外实验中发现,与非活化状态相比,小胶质细胞被脂多糖和干扰素γ激活后,CCL3、CCL4和CCL5这三种趋化因子表达高度上调,尤其是CCL5。   在与神经元共培养时,活化的小胶质细胞通过分泌CCL3、CCL4和CCL5来抑制神经元的自噬行为,表现为神经元中与自噬相关的LC3-II蛋白水平显著减少。如果将培养基中这三种趋化因子消耗殆尽,神经元的自噬则不再受抑制。 小胶质细胞激活后分泌更多的CCL3、CCL4、CCL5(D);将培养基中这三种趋化因子消耗尽后,神经元的自噬不再被抑制   趋化因子CCL3、CCL4和CCL5,都是CCR5的高亲和力配体。而说起CCR5,我们更熟悉其在艾滋病治疗领域的意义。   CCR5是人类免疫细胞表面的一个受体分子,可以被HIV病毒利用以进入T细胞,从而导致艾滋病的发生。使用CCR5拮抗剂可以有效抑制HIV病毒的侵入,减少病毒复制和传播,例如药物马拉韦罗(Maraviroc),已经被用于临床治疗艾滋病超过十年。最近,CCR5被证明在神经元中表达,但其作用仍不清楚。   在这里,研究者们发现,CCR5介导了神经元自噬抑制效应。   从机制上来看,大量CCL3、CCL4和CCL5由活化的小胶质细胞释放后,与神经元表达的CCR5结合。结合后,神经元中的PI3K-AKT-TSC2通路被激活,进而激活mTORC1,从而抑制神经元自噬。 有了体外实验结果,研究者们继续在小鼠身上寻找更多的答案。   利用亨廷顿疾病小鼠模型以及tau蛋白聚集小鼠模型,研究者们先是验证了上述结论。   与没有患病的小鼠相比,这些发生神经退行性疾病的小鼠大脑中,神经元的CCR5表达水平升高;小胶质细胞被激活,大脑中CCL3、CCL4和CCL5水平更高;mTORC1信号通路上调,LC3-II蛋白水平下降。如果使用遗传学手段将小鼠大脑中的CCR5耗竭,可以显著下调mTORC1信号通路,并降低HTT蛋白聚集体和不溶性tau蛋白的数量。 除此之外,研究者们发现,在神经退行性疾病的前驱期,小鼠大脑中的CCR5就已经开始抑制神经元自噬,而且随着疾病进展,tau蛋白聚集还会反过来驱动CCR5介导的自噬抑制效应。   如此来看,CCR5是调节神经元自噬的重要开关。那我们不妨尝试利用现成的药物来关闭神经元上的CCR5,也就是刚才提到的CCR5拮抗剂马拉韦罗。   研究者们在8个月龄的神经退行性疾病小鼠模型中发现,与空白载体治疗组相比,持续4周每日腹腔注射马拉韦罗显著减少了患病小鼠神经元中的mTORC1异常激活,HTT蛋白或tau聚集体数量减少,tau蛋白聚集小鼠的认知功能得到改善。 以上结果说明,抑制CCR5可有效解决神经退行性疾病小鼠模型中的mTORC1异常激活以及自噬抑制效应,并改善这些疾病的临床表现。   最后,研究者们很想知道为什么神经元里会多出这么些CCR5。   一系列研究结果显示,CCR5本身也是自噬底物,正常情况下理应在神经元中通过自噬效应维持在正常水平。但是由于CCL5与CCR5的结合导致自噬被抑制,神经元无法丢弃多余的CCR5,导致恶性循环的开始。换句话说,CCR5可以通过抑制自噬来调节其在神经元上的表达。   如果将自噬相关蛋白ATG16敲除,这种恶性循环则被终止,与CCL5的结合不会引起CCR5的水平异常提高。 总体来说,研究者们不仅揭示了小胶质细胞加速神经变性的新机制,更重要的是,还证明可以利用现有的安全药物来针对这一机制进行有效治疗。 研究者们表示,马拉韦罗只是投石问路。在之前CCR5拮抗剂的开发过程中,还有许多候选药物因对HIV无效而宣告失败,但我们或许可以在这之中寻找到更多具有预防神经退行性疾病潜力的药物[4]。   参考文献: [1]Soto, C., and Pritzkow, S. (2018). Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci.21, 1332–1340. https://doi.org/10.1038/s41593-018-0235-9. [2]Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res. 24, 24–41. https://doi.org/10.1038/cr.2013.168. [3]https://www.cell.com/neuron/fulltext/S0896-6273(23)00268-4#%20 [4]https://ukdri.ac.uk/news-and-events/hiv-drug-helps-protect-against-build-up-of-dementia-related-proteins-in-mouse-brains