2017年4月《Science》杂志报道了美国杜克大学和霍华德-休斯医学研究所的研究人员开发出来的一种新方法——DART(Drugs Acutely Restricted by Tethering)。这种方法可以将药物运送给大脑中特定类型的神经元,从而为研究神经系统疾病提供前所未有的能力,同时也有望更有针对性地治疗这些疾病。
在此项研究中研究人员运用DART方法揭示出帕金森病模式小鼠中的行动困难是由AMPAR控制的。AMPAR是一种突触蛋白,能够让神经元接受大脑中其他神经元快速传来的信号。这些结果揭示出为何近期一种AMPAR阻断药物的临床试验结果不佳,并且提供一种新方法使用这种药物。DART的工作机制是对一种特定类型的细胞进行基因编程,使之表达来自细菌的一种惰性酶HaloTag。研究人员在HaloTag上连接了TM跨膜区域,这样HaloTag就可以独立表达并锚定在细胞膜上,同时不影响细胞本身蛋白的表达。如图所示,通过改造HaloTag的配体HTL(末端连接药物Rx),达到了HTL与HaloTag结合、将药物靶向性作用于特定受体的效果。
当研究人员注射某种AMPAR阻断药物时,HaloTag会捕获这种药物并将它附着在特定细胞的表面上。研究人员注射非常低剂量的药物,目的是让它不会影响其他的细胞。当这种药物被酶HaloTag标记的细胞表面所捕获后的几分钟后,它的浓度比其他任何地方高100~1000倍。在利用帕金森病模式小鼠开展的实验中,研究人员将这种HaloTag附着到在基底神经节(大脑中复杂运动控制的区域)中发现的两种神经元上。一种神经元是D1神经元,被认为发送“运动”指令。另一种神经元是D2神经元,被认为发挥着相反的作用,提供阻止运动的指令。
利用DART方法,研究人员将一种AMPAR阻断药物仅运送到D1神经元,仅运送到D2神经元,或者同时运送到D1神经元和D2神经元。当同时运送到这两种神经元时,这种药物仅改善运动功能障碍的几种因素中的一种,这真实反映了最近的一项人体临床试验取得的结果。
随后研究人员发现将这种药物仅运送到D1神经元中不会产生任何效果。然而,令人吃惊的是,当将这种药物仅运送到D2神经元中时,这些帕金森病模式小鼠的运动变得更加频繁和更加快速,换句话说,更加接近于正常小鼠。利用DART方法,证实了帕金森病的运动功能障碍是由D2神经元中基于AMPAR的放电因素引起的。