《线粒体中的HIV RNA:潜在的细胞病原》

  • 来源专题:艾滋病防治
  • 编译者: 李越
  • 发布时间:2005-04-14
  • Abstract. The intracellular distribution of HIV-1 RNA transcripts in infected cells was studied using in situ hybridization detected by electron microscopy and cellular fractionation. Although viral RNA and core protein could be detected throughout the cytoplasm and nucleus, viral RNA was found in significantly increased amounts in mitochondria relative to the cytoplasm and nucleus. In contrast, cellular poly(A) RNA or viral gag proteins were not increased in the mitochondria. A cell line containing an integrated latent genome that could be induced to express viral RNA after phorbol ester stimulation showed an increase in viral RNA accumulation in mitochondria parallel with the increase in HIV expression levels. Concomitant with HIV expression, there was a decrease in mitochondrial viability. Using immunofluorescent markers to detect probes to HIV RNA transcripts and antibodies to mitochondrial proteins simultaneously in single cells, there was an inverse relationship between the amount of viral RNA and mitochondrial integrity. High levels of viral RNA in mitochondria were found in acutely (but not chronically) infected cells. We propose that HIV RNA import into mitochondria can compromise mitochondrial function.
  • 原文来源:http://www.jcb.org/cgi/reprint/126/6/1353
相关报告
  • 《细胞治疗中,线粒体膜电位识别细胞》

    • 来源专题:重大新药创制—内分泌代谢
    • 编译者:李永洁2
    • 发布时间:2015-12-10
    • 长期存活继转移的CD8 + T细胞和抗肿瘤免疫依赖于它们的代谢功能,但基于代谢功能治疗性T细胞的方法没有很好地建立。在这里,我们利用了亲脂性阳离子染料四甲甲酯(TMRM)基于它们的线粒体膜电位(线粒体膜电位)来鉴定和分离代谢功能较强的T细胞。综合代谢组学和基因表达分析表明在低线粒体膜电位排序CD8 + T细胞中代谢功能的改善。相较于高线粒体膜电位的细胞,这些低线粒体膜电位的T细胞转移在体内长期持续存在,并阻止肿瘤的形成。使用的线粒体膜电位的排序,具有优异的代谢功能的细胞中观察到的CD8 +,CD4 + T细胞亚群,和长期的造血干细胞。此代谢为基础的细胞选择可以广泛地适用于涉及HSC或淋巴细胞的病毒相关的疾病和癌症的治疗中转移疗法。
  • 《Nature︱线粒体复合物I在微胶质细胞中的活性维持了神经炎症》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-16
    • 2024年3月13日,剑桥大学等机构的研究人员在Nature上发表了题为Mitochondrial complex I activity in microglia sustains neuroinflammation的文章。 持续的髓系细胞的缓慢燃烧或低度激活是包括多发性硬化症在内的几种慢性神经系统疾病的共同特征。不同的代谢和线粒体特征指导了髓系细胞的激活及其不同的功能状态。然而,这些代谢特征如何持续中枢神经系统的炎症尚不清楚。 该研究使用多组学方法,识别出一个分子标志,该标志通过线粒体复合物I活性驱动的反向电子运输和活性氧种类的产生,维持小胶质细胞的激活。从机制上讲,阻断促炎小胶质细胞中的复合物I可以保护中枢神经系统免受神经毒性损伤,并在体内动物疾病模型中改善功能结果。小胶质细胞中的复合物I活性是促进中枢神经系统慢性炎症性疾病神经保护的潜在治疗靶点。