《微生物:铁短缺对微生物的抑制》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2017-05-22
  • Scientists describe the tropical ocean often as a 'blue desert'. The reason for this is the limited growth of unicellular algae compared to other oceanic regions, which would otherwise color the ocean green. The growth of these algae depends on nutrients such as nitrogen and phosphorus. At the same time, other marine organisms depend on these 'ocean plants' to eat and survive in the ocean.

    "In principal, nitrogen and phosphorus are present even in the tropical ocean. But often these elements are incorporated into parts of dead plants and animals that are sinking to the ocean floor," explains the lead author Dr. Thomas Browning of GEOMAR Helmholtz Centre for Ocean Research Kiel.

    Microbes can get to these hidden nutrients by recycling the dead matter with the help of enzymes. As a result, nutrients, such as phosphorus, can be made available again. But enzymes require trace elements such as iron to function, as the biologist Browning and his colleagues from GEOMAR and the University of Southampton described in a study that was recently published in the international journal Nature Communications.

    "If you look at the nutrient distributions in the oceans on a global scale, you can see regional differences," says Dr. Browning. "Interestingly, we know from previous observations that for regions where nutrients are limiting the growth of marine algae, not all available pools of nutrients are being used. But why?."

    During a research cruise in the framework of the Collaborative Research Centre 754 "Climate -- Biogeochemistry Interactions in the Tropical Ocean," the research team was searching for an answer to this question. In field experiments iron was added to seawater and the microbial enzyme activity was determined. "We observed that the activity of a widely-distributed group of microbial enzymes was influenced by the availability of iron in the seawater," Dr. Browning points out.

    The results helped to confirm a hypotheses made in a previous study by scientists at the University of Oxford. "They demonstrated by laboratory experiments, that microbial enzymes need iron to process phosphorus, and suggested this could also be important in the ocean. We have confirmed for the first time that this is indeed the case," Browning explains.

    Between the key nutrients nitrogen and phosphorus, nitrogen is primarily seen as the main limiting factor for the growth of algae in the ocean. The additional supply of nitrogen into the world's oceans by human activities, however, could change this situation in the future. Phosphorus limitation might become more widespread and the presence of iron would therefore be expected to play a major role. With respect to ecological cycles in the ocean, this shift would influence algae, their oxygen production, and ability to take up CO2 from the atmosphere.

    Journal Reference:

    T. J. Browning, E. P. Achterberg, J. C. Yong, I. Rapp, C. Utermann, A. Engel, C. M. Moore. Iron limitation of microbial phosphorus acquisition in the tropical North Atlantic. Nature Communications, 2017; 8: 15465 DOI: 10.1038/ncomms15465

  • 原文来源:https://www.sciencedaily.com/releases/2017/05/170519083628.htm
相关报告
  • 《缺铁会抑制海洋微生物的生长》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:mall
    • 发布时间:2017-06-05
    • 铁元素是海洋中一种重要的营养物质。来自亥姆霍兹海洋研究中心和英国南安普敦大学的研究人员近日在国际杂志—自然通讯(Nature Communications)上证明铁元素可以抑制微生物从海洋中获取磷。 热带海洋被科学家们称为“蓝色沙漠”。因为与其他海域相比,单细胞藻类在热带海域的生长速度十分有限,否则会导致海洋颜色变绿。这些藻类的生长依赖于氮和磷等营养物质。与此同时,其他海洋生物依靠这些“海洋植物”维持生存。 文章第一作者Thomas Browning博士解释道:“原则上来讲,氮和磷在热带海洋中也是存在的,而这些元素通常出现于海底死亡的动植物中。”微生物在酶的作用下从死亡物质中吸收潜在的营养物质。因此,磷等营养物质可以再次得到利用,但酶需要含铁的微量元素才能发挥作用。 “如果在全球尺度范围内观察海洋的营养分布,就能发现地区的差异性。有趣的是,我们从以前的观察中了解到,对于那些营养物质限制海藻生长的地区,并不是所有可用的营养物质都在被使用,这是为什么呢?” “热带海洋生物地球化学相互作用”合作研究中心的科研人员对此进行了研究,利用实验在海水中添加铁元素,然后测定微生物酶的活性。实验结果显示,微生物酶的活性受到了海水中铁元素的影响。这证实了牛津大学科学家们先前的一项研究假设,即微生物酶需要铁来处理磷,这在海洋营养循环中很重要。 在氮和磷营养物质之间,氮被认为是海藻生长的主要限制因素。人类活动给海洋提供了多余的氮,这或许会在未来有所改观。磷的限制影响范围可能也会更加广泛,所以,铁元素将会扮演非常重要的角色。就海洋生态循环而言,这种转变将影响藻类、氧气产成和从大气吸收二氧化碳的能力。 (刘思青 编译)
  • 《稻田土壤铁-氮耦合的微生物机制取得重要进展》

    • 来源专题:农业立体污染防治
    • 编译者:金慧敏
    • 发布时间:2014-12-18
    •   稻田土壤是一种典型的人工湿地系统,其周期性的干湿交替导致了系列的氧化还原反应。由于稻田土壤的这一特性以及丰富的铁(Fe)含量,异化Fe(III)还原现象普遍存在于淹水稻田土壤中,并被认为可调控其他元素的生物地球化学过程。施氮(N)肥(尿素或氨)是人们为了维持稻田土壤肥力和增加水稻产量的一种重要农业管理措施。已有研究表明,在其他生境,如湿地和热带森林土壤中发现异化Fe(III)还原与N元素循环之间存在联系,然而人们对稻田土壤中微生物介导的异化Fe(III)还原与N元素循环相耦合的过程知之甚少。   鉴于稻田土壤在全球农业生产和生态环境功能中的突出地位,中科国学院生态环境研究中心朱永官课题组对我国稻田土壤中的Fe-N耦合过程进行了一系列研究。首先,他们选取我国南方第四纪红土母质发育的稻田土壤,通过室内泥浆厌氧培养手段,以13C-乙酸盐为底物,分别添加水铁矿和针铁矿作为唯一末端电子受体,采用基于rRNA的稳定性同位素探针(rRNA-SIP)结合基于16S rRNA的454高通量测序技术,研究了长期施N肥(尿素)对稻田土壤中依赖于乙酸盐同化的Fe(III)还原微生物群落的影响。他们首次揭示了长期施N肥能够促进稻田土壤中Fe(III)还原过程以及改变依赖于乙酸盐的Fe(III)还原细菌的群落结构。此外,他们还发现尽管不同形态的铁矿对Fe(III)还原细菌的类群具有选择性,水铁矿和针铁矿的添加均刺激了两种土壤中Geobacter属的增长,且长期施氮肥导致其增长幅度更大。这些结果暗示着长期施N肥在微生物介导的稻田土壤Fe的生物地球化学循环中的重要性,强调了元素生物地球化学循环之间复杂的相互作用。这一研究成果发表在自然出版集团的The ISME Journal(Ding et al., ISME J., 2014, DOI: 10.1038/ismej.2014.159)上。随后,他们以一个第四纪红土母质发育的时间序列稻田土壤为对象,采用基于15N-NH4+(15NH4+)的稳定性同位素示踪以及乙炔(C2H2)抑制技术,首次证明了稻田土壤中存在铁氨氧化过程,即在厌氧条件下,以Fe(III)为电子受体,Fe(III)被还原为Fe(II)的同时铵(NH4+)被氧化为氮气(N2),或亚硝酸盐(NO2–),或硝酸盐(NO3–)的过程(图1),其中,直接生成N2是稻田土壤中铁氨氧化过程的主要途径。此外,他们还发现水稻耕作可提高土壤微生物可还原Fe(III)水平,促进铁氨氧化反应,从而刺激土壤中N损失,通过估算发现铁氨氧化过程造成的N损失约占我国氨肥田间施用量的3.9–31%,推测此过程是稻田土壤N损失的潜在重要途径之一,可能影响到对陆地生态系统氮素损失的估算。这一研究成果发表在Environmental Science and Technology(Ding et al., Environ. Sci. Technol., 2014b, DOI: 10.1021/es503113s)上。