《机械激活离子通道压电晶体结构》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-12-27
  • 压电和压电是机械激活离子通道,介导触觉感知、本体感受和血管发育。Piezos与其他离子通道不同,其结构仍不明确,阻碍了对其浇注和离子渗透性能的详细研究。本文报道了一种高分辨率的小鼠压电晶体结构。净化-溶解复合物采用三桨叶螺旋桨的形状,带有弯曲的跨膜区域,每一个protomer至少包含26个跨膜螺旋。灵活的螺旋桨桨叶可以采用不同的构象,由一系列四跨膜螺旋束组成,我们称为“压电重复”。羧基末端的区域排列在中心离子孔上,而通道在胞溶胶中被收缩封闭。一种螺旋形的螺旋形波束和锚定义域将压电片重复到孔中,并准备以不同的方式控制门脉。这种结构提供了一个跳板来进一步分析压电片是如何被机械力调节的。

    ——文章发布于2017年12月20日

相关报告
  • 《Nature | 机械激活在OSCA离子通道中打开了脂质覆盖的孔道》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-10
    • 2024年4月3日,中国科学院上海有机化学研究所生物与化学交叉研究中心张一小团队联合澳大利亚Vitor Chang心脏研究所Charles Cox团队以及澳大利亚国立大学Ben Corry团队在 Nature 期刊发表了题为Mechanical activation opens a lipid-lined pore in OSCA ion channels 的研究论文。 OSCA/TMEM63家族是目前已知的最大的一类机械力敏感离子通道家族,在植物和动物界中均承担着重要的生理功能,比如逆境响应、听觉、渴觉及湿度感知等。但是OSCA/TMEM63家族蛋白是如何被机械力激活打开的,其分子机制并不清楚,主要原因在于想要在结构解析的过程中模拟机械力环境非常困难,这也是机械力通道研究领域的一大技术难点。 该研究通过多种策略模拟机械力环境,结合冷冻电镜、电生理、分子动力学模拟等手段,首次揭示了OSCA/TMEM63家族蛋白在机械力激活状态下一种全新的“蛋白-磷脂”离子孔道组成形式。由于OSCA/TMEM63家族蛋白与介导听觉形成的TMC1机械力敏感通道及具有离子通道和脂质翻转酶活性的TMEM16家族蛋白在结构上具有高度相似性,该研究也对这些结构相似家族蛋白的分子机制有重要提示作用。此外,该研究发展了新的基于nanodiscs的机械力环境模拟方法,同时扩展了小膜蛋白在脂质体中进行结构解析的可行性,为包括机械力通道在内的其他膜蛋白研究提供了新的思路。
  • 《CRISPR-Cpf1结合crRNA的复合物晶体结构》

    • 来源专题:转基因生物新品种培育
    • 编译者:雷洁
    • 发布时间:2016-04-27
    • CRISPR-Cas系统是细菌编码的适应性免疫系统,该系统通过RNA引导的效应蛋白剪切病毒的DNA或者RNA从而抵抗病毒的感染。该系统之一的CRISPR-Cas9系统被用来作为可编程的基因编辑工具用于细胞内目的DNA的剪切、激活表达、修饰、突变等。由于CRISPR-Cas9系统能够在活细胞中高效地、便捷地“编辑”任何基因,作为科研、医疗等领域的强有力工具,已被广泛地应用于全世界的生物和医学实验室。 刚刚发现的CRISPR-Cpf1系统是一类新型的CRISPR-Cas系统,能够在crRNA引导下在人类细胞内剪切目的DNA底物。而且,Cpf1本身也是一个具有序列特异性的RNase,这也是目前发现的唯一一个具有核酸序列特异性且同时具有DNase和RNase活性的核酸酶。Cpf1和Cas9很大的不同还在于:Cpf1仅需要一个拷贝的crRNA,而Cas9需要序列更长的tracrRNA和crRNA去识别、剪切底物DNA,较短的crRNA在转染细胞过程中将更高效;Cpf1和Cas9识别DNA底物上的模块(PAM)也不同;Cpf1剪切底物是通过粘性末端剪切,而Cas9是末端剪切,粘性末端剪切将更有利于基因编辑后的修复。 在该项研究中,黄志伟团队首先解析了结合了crRNA的Cpf1复合物的晶体结构。非常意外的是,Cpf1并不是之前人们推测的二聚体状态,而是一个呈三角形的单体,位于该结构中间是一个带有正电荷的凹槽。crRNA通过发卡结构形成高度扭曲的构象紧密结合在Cpf1的核酸结合结构域,和底物DNA配对的crRNA 3'末端位于Cpf1凹槽的一端。和Cas9结合的sgRNA显著不同的是,Cpf1结合的crRNA的引导序列部分(guide sequence)并没有电子密度,这说明在没有底物结合的状态下这部分序列和Cpf1的结合比较松散。据黄志伟介绍,结构观察发现一个紧密结合crRNA的六水合镁离子对稳定crRNA构象激活Cpf1的催化活性非常关键。当然,我们也不能排除镁离子也同时直接参与了对底物的催化反应。通过比较Cpf1和Cas9复合物的结构发现,LHD区域推测可能是双链DNA底物结合的PAM区域。 该研究发现Cpf1在没有crRNA结合的状态下处于松散的构象,crRNA的结合引起Cpf1发生显著的构象变化。与Cas9结合sgRNA极为不同的是,仅仅crRNA的重复序列部分(repeat sequence)就能引起Cpf1构象的巨大变化,这反映了这类短小的crRNA与Cas9结合的长sgRNA的识别机制的巨大差别。该结构显示来自于H843、 K852以及K869催化残基侧链上的氮原子位于一个平面上,同时和RNA A(+20)的磷酸基团形成氢键,该结构证据表明Cpf1剪切pre-crRNA成为crRNA是一个碱催化的反应。