《CRISPR-Cpf1结合crRNA的复合物晶体结构》

  • 来源专题:转基因生物新品种培育
  • 编译者: 雷洁
  • 发布时间:2016-04-27
  • CRISPR-Cas系统是细菌编码的适应性免疫系统,该系统通过RNA引导的效应蛋白剪切病毒的DNA或者RNA从而抵抗病毒的感染。该系统之一的CRISPR-Cas9系统被用来作为可编程的基因编辑工具用于细胞内目的DNA的剪切、激活表达、修饰、突变等。由于CRISPR-Cas9系统能够在活细胞中高效地、便捷地“编辑”任何基因,作为科研、医疗等领域的强有力工具,已被广泛地应用于全世界的生物和医学实验室。

    刚刚发现的CRISPR-Cpf1系统是一类新型的CRISPR-Cas系统,能够在crRNA引导下在人类细胞内剪切目的DNA底物。而且,Cpf1本身也是一个具有序列特异性的RNase,这也是目前发现的唯一一个具有核酸序列特异性且同时具有DNase和RNase活性的核酸酶。Cpf1和Cas9很大的不同还在于:Cpf1仅需要一个拷贝的crRNA,而Cas9需要序列更长的tracrRNA和crRNA去识别、剪切底物DNA,较短的crRNA在转染细胞过程中将更高效;Cpf1和Cas9识别DNA底物上的模块(PAM)也不同;Cpf1剪切底物是通过粘性末端剪切,而Cas9是末端剪切,粘性末端剪切将更有利于基因编辑后的修复。

    在该项研究中,黄志伟团队首先解析了结合了crRNA的Cpf1复合物的晶体结构。非常意外的是,Cpf1并不是之前人们推测的二聚体状态,而是一个呈三角形的单体,位于该结构中间是一个带有正电荷的凹槽。crRNA通过发卡结构形成高度扭曲的构象紧密结合在Cpf1的核酸结合结构域,和底物DNA配对的crRNA 3'末端位于Cpf1凹槽的一端。和Cas9结合的sgRNA显著不同的是,Cpf1结合的crRNA的引导序列部分(guide sequence)并没有电子密度,这说明在没有底物结合的状态下这部分序列和Cpf1的结合比较松散。据黄志伟介绍,结构观察发现一个紧密结合crRNA的六水合镁离子对稳定crRNA构象激活Cpf1的催化活性非常关键。当然,我们也不能排除镁离子也同时直接参与了对底物的催化反应。通过比较Cpf1和Cas9复合物的结构发现,LHD区域推测可能是双链DNA底物结合的PAM区域。

    该研究发现Cpf1在没有crRNA结合的状态下处于松散的构象,crRNA的结合引起Cpf1发生显著的构象变化。与Cas9结合sgRNA极为不同的是,仅仅crRNA的重复序列部分(repeat sequence)就能引起Cpf1构象的巨大变化,这反映了这类短小的crRNA与Cas9结合的长sgRNA的识别机制的巨大差别。该结构显示来自于H843、 K852以及K869催化残基侧链上的氮原子位于一个平面上,同时和RNA A(+20)的磷酸基团形成氢键,该结构证据表明Cpf1剪切pre-crRNA成为crRNA是一个碱催化的反应。

相关报告
  • 《机械激活离子通道压电晶体结构》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-12-27
    • 压电和压电是机械激活离子通道,介导触觉感知、本体感受和血管发育。Piezos与其他离子通道不同,其结构仍不明确,阻碍了对其浇注和离子渗透性能的详细研究。本文报道了一种高分辨率的小鼠压电晶体结构。净化-溶解复合物采用三桨叶螺旋桨的形状,带有弯曲的跨膜区域,每一个protomer至少包含26个跨膜螺旋。灵活的螺旋桨桨叶可以采用不同的构象,由一系列四跨膜螺旋束组成,我们称为“压电重复”。羧基末端的区域排列在中心离子孔上,而通道在胞溶胶中被收缩封闭。一种螺旋形的螺旋形波束和锚定义域将压电片重复到孔中,并准备以不同的方式控制门脉。这种结构提供了一个跳板来进一步分析压电片是如何被机械力调节的。 ——文章发布于2017年12月20日
  • 《植物所在硅藻特有捕光天线蛋白复合体结构研究中取得突破》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2019-04-06
    • 硅藻是海洋中最“成功”的浮游光合生物之一,它们通过光合作用贡献了地球上每年约20%的原初生产力,且在地球的元素循环和气候变化中发挥重要作用,这与硅藻特有的捕光天线蛋白“岩藻黄素-叶绿素a/c蛋白复合体”(Fucoxanthin chlorophyll a/c protein,FCP)的功能密切相关。硅藻的FCP复合体具有出色的蓝绿光捕获能力和极强的光保护能力,这是硅藻能够在海洋中繁盛的重要原因之一。   硅藻的FCP复合体属于捕光天线蛋白复合体(Light harvesting complex,LHC)超级家族,但其氨基酸序列与高等植物和绿藻的叶绿素a/b捕光天线蛋白的同源性很低,而且最为突出的是FCP结合大量岩藻黄素和叶绿素c,能够捕获蓝绿光以适应水下弱光环境。同时,FCP结合的岩藻黄素和硅甲藻黄素参与建立硅藻的超级光保护机制可以帮助这种浮游生物适应海水表面的强光环境。然而硅藻FCP复合体的结构长期没有得到解析,限制了硅藻光合作用机理的研究。   中国科学院植物研究所沈建仁和匡廷云团队一直致力于高等植物和藻类捕光天线蛋白的研究工作,通过多种手段解析了一种羽纹纲硅藻——三角褐指藻(Phaeodactylum tricornutum)FCP二聚体1.8埃的晶体结构。研究人员发现,每个FCP单体中结合7个叶绿素a、7个岩藻黄素、2个叶绿素c、1个硅甲藻黄素和一些脂类及去垢剂分子;每个叶绿素c分子分别与2个叶绿素a分子成簇,并与其中一个叶绿素a分子紧密耦合,叶绿素c的原卟啉环结合在叶绿素a和岩藻黄素之间;每个叶绿素簇内部的叶绿素距离都在3.5埃左右,可以使能量快速高效地传递;FCP二聚体内部的叶绿素距离都在10埃以内,使激发能达到快速的平衡和传递。   研究人员还发现,FCP单体中有6个岩藻黄素分子插入到光合膜内,另1个新型的岩藻黄素分子水平结合在膜表面,这拓展了类胡萝卜素在捕光天线蛋白中的结合方式,提高了其绿光捕获能力;所有岩藻黄素与叶绿素距离都在4埃之内,使其捕获的光能可以高效地向叶绿素传递,同时也可能使岩藻黄素成为光保护的有效成员;硅甲藻黄素分子与FCP蛋白结合较弱,以便于参加到硅藻的类胡萝卜素循环中,进而使得硅藻适应从水下到水面的快速剧烈的光环境变化。   该研究首次描绘了叶绿素c和岩藻黄素在硅藻光合膜蛋白中的结合细节,阐明了叶绿素和岩藻黄素在FCP复合体中的空间排布,揭示了叶绿素c和岩藻黄素捕获蓝绿光并高效传递能量的结构基础;首次揭示了FCP二聚体的结合方式,对几十年来硅藻主要捕光天线蛋白聚合状态研究提供了第一个明确的实验证据。研究成果为揭示光合作用光反应拓展捕光截面和高效捕获传递光能机理,以及硅藻超强的光保护机制提供了坚实的结构基础;为实现光合作用宽幅捕获和快速传递光能的理论计算提供了可能,为人工模拟光合作用机理提供了新理论依据;为指导设计新型作物、拓展捕光截面、防止光破坏提供了新思路和新策略。   该研究成果于2月8日在国际学术期刊《科学》(Science)以长文(Online Research Article)形式发表,文章题为Structural basis for blue-green light harvesting and energy dissipation in diatoms。匡廷云与沈建仁为论文通讯作者,王文达和于龙江为论文共同第一作者。该项目得到日本冈山大学的合作研究支持,并得到上海同步辐射光源、日本SPring-8和KEK同步辐射光源、瑞士SLS同步辐射光源的技术支持。中国科技部国家蛋白质重点研发计划、中组部人才项目以及中国科学院先导专项、前沿重点项目和院长基金提供了经费支持。