《Nature Communication:具有异质结构的高效钙钛矿量子点太阳能电池》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2019-07-11
  • 【背景介绍】

    金属卤族钙钛矿半导体材料在太阳能电池,光二极管,传感器和其它光电器件的应用中表现出了显著的优良特性。低维及纳米结构的材料通常可赋予材料进一步拓展应用的空间。如二维钙钛矿结构可有效提高钙钛矿太阳能电池的稳定性,从而极大推进了钙钛矿太阳能电池的商业化进程。零维的量子点钙钛矿结构不仅具有更高的钙钛矿相稳定性,还具更广泛钙钛矿材料的离子可调控性。此外,钙钛矿量子点表面基团的可调控性,能实现对于采用溶液法沉积的钙钛矿薄膜电池中无法实现的器件结构。

    【成果简介】

    近期,美国国家可再生能源实验室Joseph M Luthur团队与南开大学张明慧教授以及李国然教授团队合作,采用逐层沉积法,制备了由不同组分量子点层构成的钙钛矿吸收层。通过在钙钛矿层内部引入该异质结构,有效提高了电子与空穴的分离及收集,并通过调控异质结位置以及各层量子点的组成探究了其对光伏性能的影响。文中描述了一种可有效提高钙钛矿太阳能电池性能的异质结构,其组装的钙钛矿量子点太阳能电池的稳定输出的光电转换效率可达15.74%.

    相关研究发表于Nature Communication上,论文第一作者为南开大学CSC联陪博士生赵乾,通讯作者为美国国家可再生能源实验室Joseph M Luthur

  • 原文来源:http://www.cailiaoniu.com/180045.html
相关报告
  • 《新型钙钛矿太阳能电池:转换率18.1%》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-30
    • 钙钛矿太阳能电池在近日又获得了新的研究进展。南京工业大学海外人才缓冲基地(先进材料研究院)黄维院士、王建浦教授团队利用3溴苯甲胺制备了高结晶性、低缺陷的准二维钙钛矿薄膜。 据了解,该薄膜上层是高度取向生长的三维钙钛矿组分,其较小的带隙和低的激子束缚能可实现低能太阳光子利用和高效电荷分离。薄膜底部是竖直生长的宽带隙钙钛矿组分,有利于实现高效的电荷传输。基于这种独特结构的钙钛矿薄膜,实现了功率转换效率达18.2%的准二维钙钛矿太阳电池。未封装器件在40%相对湿度的大气环境下老化2400小时,效率仍保持初始值的82%。 更重要的是,将未封装器件浸入水中60秒,其参数几乎没有变化,展现出优异的水稳定性。此外,该器件也能作为发光二极管很好的工作,外量子效率可达3.85%。在大气环境下,未封装器件在200 mA cm-2大电流密度下寿命达96小时,刷新了钙钛矿发光二极管稳定性的世界纪录。 该研究表明,基于3溴苯甲胺的准二维钙钛矿材料有望实现高效稳定的钙钛矿光电器件,而精确调控钙钛矿薄膜生长是实现这一目标的关键因素之一。 本文封面图来源于图虫创意 .
  • 《AEM报道: 经铯阳离子钝化的14.1%CsPbI3钙钛矿量子点太阳能电池》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-07-04
    • 【背景介绍】 溶液处理的胶体量子点(CQDs)因其优良的特性而成为下一代光电技术(PVs)的候选者。在过去的十年中,无机CQDs在溶液处理太阳能电池中引起了极大的关注。由于在CQDs合成改性、表面钝化和器件制备优化方面取得成就,PbS 量子点太阳能电池继续以惊人的速度发展。虽然CsPbI3的钙钛矿相通常需要在高温下进行复杂的退火处理来获得优异的薄膜质量,但是所有具有CsPbX3化学计量学性质的无机钙钛矿纳米晶体或量子点由于其组成调整灵活、尺寸可调、缺陷容限高、高的相位稳定性等优点而被广泛关注。还开发了一种对CsPbI3量子点薄膜进行甲酰胺碘化物(FAI)处理的方法,该方法可以使薄膜中的载流子迁移率增加一倍,从而提高光电流,并使量子点太阳能电池的效率达到创纪录的13.4%。通过对量子点的大量研究表明,表面配体可以调节量子点在溶液中的分散性、量子点在薄膜中的电子耦合和陷阱态的密度以及稳定性等方面的特性。因此,进一步了解CsPbI3量子点太阳能电池制备过程中的配体交换过程以及改善量子点间的电荷传输仍然是非常重要的。 【成果简介】 近日,苏州大学的马万里教授和袁建宇副教授(共同通讯作者)团队报道了一种利用多种无机铯(Cs)盐对新型钙钛矿量子点进行表面钝化的有效方法。通过Cs盐后处理后,不仅可以填补钙钛矿表面的空位,而且可以改善量子点之间的电子耦合。实验结果表明,量子点薄膜的自由载流子寿命、扩散长度和迁移率均得到了提高,有利于制备高效太阳能电池器件的高质量导电量子点薄膜。同时,经过优化处理工艺后,短路电流密度和填充因子显著提高,CsPbI3量子点太阳能电池的效率高可以达14.10%,该值也是目前为止文献报道的CsPbI3钙钛矿量子点电池的效率最高值。此外,通过Cs盐后处理后,CsPbI3量子点的表面环境被改善而具有更好的抗湿稳定性。该研究结果为高性能和低陷阱态钙钛矿量子点薄膜的设计提供理论依据。研究成果以题为“14.1% CsPbI3 Perovskite Quantum Dot Solar Cells via Cesium Cation Passivation”发布在国际著名期刊Adv. Energy Mater.上。本文第一作者:凌旭峰(博士研究生)。