《前沿 | 研究人员在室温下制造出量子谐振子》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2023-01-16
  • 量子谐振子作为各种场物质的本源,由正反粒子偶极子构成,它的本质是暗物质。作为一种可以控制量子粒子位置和能量的结构,在将来有望用于开发包括OLED和微型激光器在内的各种新技术。

    近期,英国圣安德鲁斯大学与新加坡南洋理工大学的联合研究团队利用有机微腔产生一种即使在室温下也显示出量子态的极化子。该成果以“Optically trapped room temperature polariton condensate in an organic semiconductor”为题发表在Nature Communications上。

    图 (左)在显微镜下看到的被捕获的量子流体,(右)当流体被困在激光束强度的下降处时量子流体的各个谐振振荡状态的形状(虚线)。

    激子 - 极化子是部分物质和部分光的混合粒子,通过半导体微腔内的强耦合结合在一起,在那里它们可以形成玻色 - 爱因斯坦凝聚物。为了制造极化子,研究人员将光限制在一层厚度大概只有一根头发丝的百分之一的有机半导体(用于 OLED 智能手机显示屏的发光材料)中。有机薄层与两个高反镜构成一个三明治结构的微腔。

    极化子,就像空气中的水分一样,可以凝结并形成一种液体。研究人员将这种量子液体集中在激光束模式中以控制其特性。这使得它以一系列类似于小提琴弦振动的谐波频率振荡。 而且这些量化振动状态的形状与“量子谐振子”的形状相匹配。

    项目负责人之一、圣安德鲁斯大学物理与天文学院的 Hamid Ohadi 博士表示:“这是我们在量子物理课程中与学生一起研究的教科书问题,也就是量子谐振子。在这之前我们认为需要复杂的冷却方法才能看到这些振荡,但现在看来室温下也可以。”他的同事 Graham Turnbull 教授补充道,“通过研究这种量子振荡器,我们正在尝试如何控制极化子的位置和运动。未来,我们希望能够利用这些知识开发用于环境传感的新型量子技术、OLED 和微型激光器。”

    Ifor Samuel 教授也是圣安德鲁斯项目团队的一员,他认为,这项研究最引人注目的地方之一是凝聚体偏离激发区域一段宏观距离,导致更长的相干性和比常规高斯激发轮廓低一个数量级的阈值。因此该研究不仅可以应用于激光,还可以用于太阳能电池。”

相关报告
  • 《前沿 | 美国制造出40万像素的超导纳米线单光子相机》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-10-31
    • 据麦姆斯咨询报道,近期,美国国家标准与技术研究院(NIST)的研究人员制造出一款包含40万像素的超导纳米线单光子相机,其分辨率超过其它同类相机的数十至数百倍。相关论文以“A superconducting nanowire single-photon camera with 400,000 pixels”为题发表于《自然(Nature)》期刊。 超导纳米线单光子相机使科学家能够捕获非常微弱的光信号,无论是来自太空中遥远的物体还是人脑的某些部分。NIST团队评论说,拥有更多像素的超导纳米线单光子相机“可以在科学和生物医学研究中开辟众多新应用”。 NIST制造的超导纳米线单光子相机由超细纳米线网格组成,冷却至接近绝对零度,其中电子毫无阻力地移动(即超导特性),直到纳米线被光子击中后产生电阻变化。在超导纳米线单光子相机中,即使是单个光子所传递的能量也可以被检测到,因为它会“消除”纳米线网格上特定像素的超导特性,然后结合所有光子的所有位置和强度就形成了图像。 第一个能够探测单光子的超导相机是在20多年前开发出来的。从那时起,此类相机包含的像素不超过几千个——对于大多数应用来说太有限了。然而,构建具有大阵列像素的超导纳米线单光子相机极具挑战性。挑战源于这样一个事实:相机的每个超导组件都必须冷却到超低温才能正常工作,而将数十万(甚至数百万)像素阵列中的每个像素单独连接到冷却系统几乎是不可能的。 NIST研究人员Adam McCaughan和Bakhrom Oripov以及美国国家航空航天局喷气推进实验室和科罗拉多大学博尔德分校的合作者共同克服了这一障碍,将来自许多像素的信号组合到几条室温读出电路线上。 NIST团队借鉴现有技术,构建了具有交叉超导纳米线阵列的单光子探测器,这些纳米线形成多行和多列,就像井字游戏中的那样。每个像素——以单独的垂直和水平纳米线交叉点为中心的微小区域——由其所在的行和列唯一地定义。 这种行列设计使NIST团队能够一次测量来自整行或整列像素的信号,而不是记录每个单独像素的数据,从而大大减少了读出电路线的数量。为此,研究人员将一根超导读出电路线与像素行平行但不接触,将另一根超导读出电路线与像素列平行但不接触。 NIST团队研发的单光子探测器可以识别短至50万亿分之一秒的信号到达时间差异,还能够每秒统计多达10万个光子撞击超导纳米线网格,并且一旦采用了新的读出电路架构,那么探测器的像素数量就取得了快速发展:几周之内,像素数量从2万跃升至40万。 “读出电路技术可以很容易地扩展到更大像素规模的单光子探测器。”NIST研究人员Adam McCaughan说,“具有数千万或数亿像素的超导纳米线单光子探测器很快就会问世。” 在接下来的一年里,该团队计划提高原型单光子相机的灵敏度,以便它能够捕获“几乎每个入射的光子”。这将使单光子相机能够解决诸如对太阳系之外的微弱星系或行星进行成像、在基于光子的量子计算机中测量光子,以及为生物医学研究做出贡献等低光照任务。
  • 《美研究人员研制出可在室温下工作的量子芯片材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-06-20
    • 硅基计算机技术在尺寸和运算速度上已经接近极限,而量子计算技术被视为有望突破该极限的替代技术之一。然而,现有量子计算技术中,一些前沿性研究需要将材料冷却到绝对零度(-273.15℃)左右,这阻碍了量子计算机从理论到实用的进程。美国斯坦福大学电子工程系教授伊Jelena Vuckovic带领其团队,近日分别在杂志上发表了3篇论文,宣称他们已经研制出能在三种量子芯片材料,包括一种量子点、两种“色心”,其中一种完全能在室温下运行,使量子计算机向实际应用跨出一大步。 第一种结构是量子点,相关论文发表在《自然•物理学》杂志上 。研究人员向砷化镓晶体内掺杂少量砷化铟制成的量子点,能成功通过激光-电子相互作用控制光子的输入和输出,而且,与之前发出单个光子不同,这次的光子能两两结伴而出。Vuckovic表示,与那些需要低温制冷的量子计算机平台相比,他们的量子点更实用,虽然目前还不能用于创建通用量子计算机,但完全可用来创建防止篡改的安全通信网络。 在另两篇发表于《纳米•通讯》杂志的论文中,Vuckovic团队介绍了一种完全不同于量子点的方法:用“色心”技术捕获电子。色心是指透明晶体中的点缺陷、点缺陷对或点缺陷群,这些缺陷能捕获电子或空穴,吸收光子使晶体呈现不同颜色。 一篇论文 描述的色心在钻石中构建而成。他们用硅原子取代钻石中的部分碳原子,在钻石晶格中创建出多个色心。这些钻石色心能高效捕获自旋电子,但仍需制冷到一定温度。 Vuckovic还与其他团队合作,开发出第三种材料——高效修饰碳化硅色心。他们在另一篇论文 中描述了对这种材料的测试结果。之前有研究报道,对碳化硅进行修饰后能制成在室温下工作的色心,但效率不高,不能用来研制量子芯片。而Vuckovic团队通过敲除碳化硅中的部分硅原子,研制出了高效色心。然后,他们再在色心周围加入纳米线结构,大大改进了色心捕获电子的能力。 Vuckovic表示,他们研制的高效色心完全能在室温下操作,是量子计算机研究领域的一大突破,为量子芯片的研制提供了可供实际操作的方法。但她同时表示:“这三种材料哪种最终会脱颖而出,我们还需继续研究。”