《新突破!有机太阳能电池向前一步》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2024-07-19
  • 7月17日,在“抚顺光伏产业创新发展研讨会”这一盛会上,汇聚了包括中国科学院院士李永舫、中国化工学会副理事长兼秘书长方向晨、中国战略新兴产业金融创新研究院院长孟祥阁、中国石油与化工工业联合会科技与装备部副主任王秀江、中国化工学会化工新材料专业委员会主任李效玉、秘书长穆元春,以及辽宁石油化工大学教授高志贤等在内的众多顶尖专家学者与企业精英,他们共同聚焦“光”的未来,深入探讨了光伏领域的最新前沿技术,为推动我国“双碳”目标的落地贡献智慧与力量。

    会上,有机太阳能电池领域的最新进展成为了全场瞩目的焦点。李永舫院士详尽阐述了有机太阳能电池作为第三代电池技术的独特魅力,其核心优势在于其超薄活性层设计,仅约100纳米的厚度,相较于晶硅电池的数百微米,实现了数量级的飞跃。这一创新不仅显著减轻了组件的重量,更赋予了有机太阳能电池前所未有的柔韧性与透明度,为其在可穿戴设备、建筑光伏一体化系统(如半透明窗户、智能窗帘等)中的广泛应用奠定了坚实基础,预示着绿色建筑与未来生活方式的深刻变革。

    此外,有机太阳能电池在环保方面亦展现出卓越性能,彻底摆脱了铅污染等环境问题的困扰,彰显了绿色能源的纯净与可持续。尤为值得一提的是,即便在光线柔和的室内环境中,该类电池仍能维持与户外强光下相当的光电转换效率,这一特性极大地拓宽了其应用场景,为智能家居、室内照明等领域带来了前所未有的发展机遇。

    尤为振奋人心的是,抚顺本土企业——橙子(辽宁)科技科技有限公司(简称“橙子科技”)在此次研讨会上宣布了重大突破,成功实现了有机光伏聚合物X1系列产品的量产,其电池转换效率超过18%,标志着有机太阳能电池产业化进程迈出了坚实的一步,也为市场注入了新的活力。橙子科技凭借其强大的生产灵活性,能够迅速响应市场需求,实现从500公斤至1吨不等的定制化生产,充分满足200万至400万平方米的广阔市场需求,预示着有机太阳能电池市场即将开启全新的篇章。

  • 原文来源:https://www.nengyuanjie.net/article/94524.html
相关报告
  • 《有机太阳能电池的巨大突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-01-22
    • 概要 在价格愈发便宜,无处不在的太阳能电池发展中,研究人员找到了一种方法,使电子传输效率远远超过以前用于有机太阳能电池和其他有机半导体的材料。 图注 在Randall实验室内进行的有机太阳能电池测试。Michigan 大学的研究人员已找到一种方法来驱使电子传输效率远远超过以前的有机太阳能电池和其他有机半导体材料。 “多年来,人们认为有机物导电性弱是不可避免的事实,但实验表明情况并非如此,”Peter A. Franken教授和Paul G. Goebel教授在UM领导此项研究。与当今广泛使用的无机太阳能电池不同,有机物可由便宜的柔性碳基材料如塑料所制成,制造商可使用各种颜色和配置将它们卷起来,几乎可以无缝地层压到任何表面上。然而,有机物极差的传导性已逐步限制研究进展,Forrest 相信这个发现可以改变该领域的研究方向。 研究小组发现,富勒烯分子的薄层,即有趣的圆形碳Buckyballs分子可以使电子从它们被光子撞击的地方移动数厘米。与如今电子只能行进几百纳米或更少的有机电池相比,这是一个戏剧性的增长。 电子从一个原子移动到另一个原子中,构成太阳能电池或电子元件中的电流。当今无机太阳能电池和其他半导体中使用的硅材料紧密结合了原子网络,使得电子易于穿过材料。但有机材料的致命弱点在于,其单个分子之间有很多可以捕获电子的松散的键。新的实验发现表明,研究员将有能调整其导电性能及其具体应用。 在有机半导体中电子自由运动的能力对材料性质影响极大,如有机太阳能电池的表面必须覆盖一层导电电极,在最初产生的位置上收集电子。但是自由移动的电子则可以在距离起点较远处收集。这使制造商能够将导电电极缩小到不可见的网格中,从而为窗户和其他表面上使用的透明单元奠定基础。 UM电子工程与计算机科学研究人员Quinn Burlingame说:“这一发现为我们提供了一个新的思路,可以在设计有机太阳能电池和其他有机半导体器件时发挥新的作用,远程电子传输为器件架构开辟了许多新的可能性。” Burlingame表示,这个现象的最初发现,是团队尝试提高有机太阳能电池结构效率时,所发生的一个意外。使用一种真空热蒸发的常用技术,它们在有机电池发电层顶部的C60富勒烯薄膜(每个由60个碳原子组成)上分层,即阳光中的光子使电子从其相关联的分子中脱离出来。在富勒烯上面,他们又放了一层以防止电子逸出。 他们发现了一种他们以前从未见过的有机物质,即电子在该材料中不受约束,其甚至在电池的发电区域之外。通过数月的实验,他们确定富勒烯层形成了能量阱(一个低能量区域),可防止带负电荷的电子与发电层留下的正电荷重新结合。 U-M物理系研究员,该研究的作者Caleb Cobourn说:“你可以想象一种结构,能量就像峡谷一样,电子落入其中,不能退缩。所以他们继续在富勒烯层中自由移动,而不是像在发电层中那样重新组合,它就像一个巨大的天线,可以从设备的任何地方收集电子电荷。 Forrest告诫道,这种发现在太阳能电池等应用中仅仅是理论基础,但这一发现对理解和应用有机半导体性质具有极大的影响。他说:“我相信,无处不在的太阳能是改善我们持续变暖和日益拥挤星球的关键,这意味着可将太阳能电池放在建筑物外墙和窗户等日常用品上。这样的技术有助于我们以低成本便捷的方式发电。”
  • 《新研究:有机太阳能电池进化出“新物种”》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-04-25
    • 在人类利用太阳能的各项技术中,将太阳能直接转换成电能的太阳能电池是最具发展前景的技术之一。其中,有机太阳能电池是新兴起的一个研究方向。因有机材料具有柔性好、重量轻、材料来源广泛、成本低等优势,有机太阳能电池对大规模利用太阳能、提供廉价电能具有重要意义。 近日,苏州大学材料与化学化工学部李永舫院士团队教授李耀文等人在《中国科学—化学》(ScienceChinaChemistry)上发表文章,他们利用银纳米线掺杂透明导电聚合物,并与纳米压印的网格银柔性基底复合,制备出了低面电阻、可见光高透过率的新型柔性透明复合电极,基于此电极的柔性有机太阳能电池的效率超过了12%。 “塑料”也能导电 目前,商品化的太阳能电池主要是以晶硅等无机半导体材料为活性层制备。但是,这种太阳能电池生产存在工艺复杂、成本高、原材料生产过程能耗大和污染重等弊端,同时,这类太阳能电池由于无机半导体本身的刚性结构,难以制备柔性器件。因此,制备成本低、效率高、柔性强、环境友好的新型有机太阳能电池,正成为各国科学家的目标。 在人们的印象中,塑料是不导电的。但是,2000年诺贝尔化学奖获得者打破了这一常识。20世纪70年代,美国科学家AlanJ.Heeger、AlanG.MacDiarmid和日本科学家HidekiShirakawa发现,经过氧化或还原掺杂,一类共轭聚合物能够成为导体或半导体。 塑料就是一种聚合物。聚合物要能够导电,其主链碳原子之间必须具有交替地以单键和双键结合的共轭结构,同时还必须经过掺杂处理:通过氧化或还原反应,其主链失去或获得电子,从而具有导电性。AlanJ.Heeger等人通过研究发现,对共轭聚合物聚乙炔进行碘掺杂,聚乙炔能够表现出像金属一样的导电性。 “AlanJ.Heeger等人开拓了导电聚合物领域。透明导电聚合物的电极材料是导电聚合物的一个重要应用领域,有机太阳能电池就是利用共轭聚合物或共轭有机分子这种有机半导体材料做成的。”李耀文告诉《中国科学报》。 与以硅为代表的无机半导体材料相比,有机半导体具有成本低、材料多样性、功能可调、可柔性印刷制备等诸多优点。因此,有机太阳能电池的研究热度不断攀升。特别是近年来,有机太阳能电池的研究获得了突飞猛进的发展,其光电转化效率不断刷新。有机太阳能电池已经到了商业化的“黎明前夕”。 光电转换效率突破12% 有机太阳能电池活性层材料具有优良的可弯曲性,这使其在柔性太阳能电池领域展现出了巨大的应用潜力。 李耀文表示,高性能柔性透明电极、高效和低成本的有机半导体光伏材料、大面积柔性有机太阳能电池的制备技术以及器件封装和稳定性研究,是当前实现柔性有机太阳能电池商业化应用的关键。 李耀文告诉记者,商业化的铟锡氧化物柔性透明电极由于易脆、耐弯折性能差、面电阻高、透光率低等缺点,限制了其在柔性有机太阳能电池中的应用。因此,发展具有优良机械弯曲性、低面电阻、高透光率的新型柔性透明电极显得尤为重要。 据介绍,基于银纳米线的导电薄膜不仅具有优良的机械性能,而且其光学和电学性能优异,成为极具应用前景的柔性透明电极材料。但是,粗糙度大、附着力弱,形貌不稳定等缺点依然限制了它在高性能柔性有机太阳能电池中的应用。 对此,李耀文等人采用醇溶性高导电性、高规整度的银纳米线,对透明导电聚合物掺杂,通过调控掺杂比例有效调控导电聚合物薄膜的透过率和导电性,并进一步与纳米压印的网格银柔性基底复合,构筑了新型复合柔性透明电极。 他们进一步研究发现,银纳米线的掺入为导电聚合物薄膜提供了额外的电荷传输通道,可获得较高的电导率。测试结果表明,此新型复合柔性透明电极在可见光范围内的平均透过率得到了显著提升,最高透过率达到了86%。同时,面电阻降低,导电薄膜与基底之间也表现出了良好的贴合性和热稳定性。 “这些特点有助于下一步制备高性能的柔性有机太阳能电池。”李耀文说。 接下来,研究人员发现,基于这种新型复合电极制备的柔性有机太阳能电池效率达到了12.07%,表现出了与基于玻璃基底制备的有机太阳能电池相当的效率(12.94%)。这也是目前报道的非铟锡氧化物柔性有机太阳能电池的最高效率。 产业化指日可待 “十三五”战略性新兴产业发展规划以及国家发展改革委能源局新近发布的《能源技术革命创新行动计划(2016—2030)》明确指出,将重点发展基于有机、钙钛矿半导体材料的太阳能电池。 李耀文介绍说,尽管有机太阳能电池的能量转化效率与硅基、钙钛矿太阳能电池的效率仍有较大差距,然而,它在柔性和半透明器件方面独特的优势为其产业化提供了广阔的空间,有助于实现与硅基太阳能电池的互补、填补光伏市场在柔性和半透明器件方面的空缺。 首先,有机太阳能电池光活性层所采用的有机/聚合物材料,使其在制备柔性有机太阳能电池方面具有先天的优势。 此外,有机太阳能电池的光活性层通常不仅具有较薄的厚度(100~300nm),而且其光学带隙通过对活性材料的化学剪裁可实现有效调控,从而拓展了有机太阳能电池在半透明和彩色电池领域的应用。 “有机太阳能电池具有独特的轻质、半透明、多彩化、可弯曲以及可卷对卷大规模生产的特性,在未来的可穿戴能源设备、建筑光伏一体化、光伏帐篷和光伏大棚等领域的应用上将会大放异彩。”李耀文说,“因此,柔性、半透明有机太阳能电池的研究将成为一个热点。目前我国有很多课题组已从事相关内容的研究。在未来的几年内,我国在该领域应该会有更大的突破、会有很多科研成果出现。” 据了解,中国科学院院士、中国科学院化学研究所研究员、苏州大学教授李永舫已着手相关产业化布局,在江苏省产业技术研究院有机光电技术研究所成立了光伏中心。光伏中心已配备相关研发人员和设备,主要开展有机太阳能电池光伏材料的放大量合成,以及柔性有机太阳能电池的大面积制备和稳定性研究。 谈到柔性有机太阳能电池的产业化,李永舫对《中国科学报》说:“柔性有机太阳能电池的产业化需要一步一步向前推进。”他表示,首先是高效和低成本有机光伏材料的开发和放大合成,以及高性能柔性透明电极的开发和大面积制备;其次需要开展柔性器件的大面积制备工艺、器件稳定性以及封装材料和工艺的研究;最后需要与公司合作,制备柔性有机太阳能电池组件,并建立柔性有机太阳能电池生产线,实现柔性有机太阳能电池的大规模应用。 “有机太阳能电池是中国人引领的一个研究领域,我们一定要在中国率先实现柔性有机太阳能电池的产业化。”李永舫说。