《环保观察 | 活性污泥被热死,氨氮COD超标,污水厂该怎么熬过40℃高温天?》

  • 来源专题:水与大气环境治理
  • 编译者: 胡晓语
  • 发布时间:2025-08-04
  • 每年的6-8月是污水处理厂全年运维管理的重要时段,因为夏季高温对污水处理过程的多方面影响显著。在这段时间,全国各地的污水厂普遍面临高温导致的氨氮、COD等污染因子超标问题。例如,有污水站因夏季高温导致活性污泥死亡,生化反应池失效。 高温对污水处理的影响主要体现在以下几个方面: 1. **曝气池**:高温下污泥浓度和供风量的矛盾加剧,需调整污泥浓度,并防止因缺氧引发的污泥膨胀。 2. **二沉池**:高温导致沉淀速度降低,容易翻泥,增加出水SS。微生物代谢加快,产生气体和藻类,影响出水水质。 3. **污泥处理**:高温降低浓缩效率,增加污泥腐化和上浮风险,同时增大加药成本和臭气问题。 4. **鼓风机**:高温易使润滑油温度过高,导致设备报警停机或降风量,需要加强通风和冷却。 5. **管线**:塑料管线在高温下易热变形,特别是深水曝气系统的管线,维修困难。 针对这些问题,业内提出了一些有效的应对措施和降温建议,包括: 1. 增加水喷淋系统,通过蒸发冷却降低环境温度。 2. 安装冷却风机,进行强制通风。 这些措施在一定程度上能够缓解高温对污水处理的负面影响,保证污水厂在夏季的正常运行。
  • 原文来源:http://mp.weixin.qq.com/s?__biz=MzA4OTA2MjY1Nw==&mid=2655162844&idx=1&sn=c2046849c2c95aea4c4114b9603a46a1&scene=0#wechat_redirect
相关报告
  • 《污水处理过程中COD、氨氮去除效果差 有这些原因!》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2021-06-17
    • 在进行污水处理的过程中,会遇到COD、氨氮、总氮、总磷去除效果差的情况,而之所以会造成这种结果,很可能会是以下这些原因! 1、COD处理效果差 影响COD处理效果的因素主要有: (1)营养物 一般污水中的氮磷等营养元素都能够满足微生物需要,且过剩很多。但工业废水所占比例较大时,应注意核算碳、氮、磷的比例是否满足100:5:1。如果污水中缺氮,通常可投加铵盐。如果污水中缺磷,通常可投加磷酸或磷酸盐。 (2)pH 污水的pH值是呈中性,一般为6.5~7.5。pH值的微小降低可能是由于污水输送管道中的厌氧发酵。雨季时较大的pH降低往往是城市酸雨造成的,这种情况在合流制系统中尤为突出。pH的突然大幅度变化,不论是升高还是降低,通常都是由工业废水的大量排入造成的。调节污水pH值,通常是投加氢氧化钠或硫酸,但这将大大增加污水处理成本。 (3)油脂 当污水中油类物质含量较高时,会使曝气设备的曝气效率降低,如不增加曝气量就会使处理效率降低,但增加曝气量势必增加污水处理成本。另外,污水中较高的油脂含量还会降低活性污泥的沉降性能,严重时会成为污泥膨胀的原因,导致出水SS超标。对油类物质含量较高的进水,需要在预处理段增加除油装置。 (4)温度 温度对活性污泥工艺的影响是很广泛的。首先,温度会影响活性污泥中微生物的活性,在冬季温度较低时,如不采取调控措施,处理效果会下降。其次,温度会影响二沉池的分离性能,例如温度变化会使沉淀池产生异重流,导致短流;温度降低会使活性污泥由于粘度增大而降低沉降性能;温度变化会影响曝气系统的效率,夏季温度升高时,会由于溶解氧饱和浓度的降低,而使充氧困难,导致曝气效率的下降,并会使空气密度降低,若要保证供气量不变,则必须增大供气量。 2、氨氮处理效果差 污水中氨氮的去除主要是在传统活性污泥法工艺基础上采用硝化工艺,即采用延时曝气,降低系统负荷。 影响氨氮处理效果的原因涉及许多方面,主要有: (1)污泥负荷与污泥龄 生物硝化属低负荷工艺,F/M一般在0.05~0.15kgBOD/kgMLVSS·d。负荷越低,硝化进行得越充分,NH3-N向NO3--N转化的效率就越高。与低负荷相对应,生物硝化系统的SRT一般较长,因为硝化细菌世代周期较长,若生物系统的污泥停留时间过短,即SRT过短,污泥浓度较低时,硝化细菌就培养不起来,也就得不到硝化效果。SRT控制在多少,取决于温度等因素。对于以脱氮为主要目的生物系统,通常SRT可取11~23d。 (2)回流比 生物硝化系统的回流比一般较传统活性污泥工艺大,主要是因为生物硝化系统的活性污泥混合液中已含有大量的硝酸盐,若回流比太小,活性污泥在二沉池的停留时间就较长,容易产生反硝化,导致污泥上浮。通常回流比控制在50~100%。 (3)水力停留时间 生物硝化曝气池的水力停留时间也较活性污泥工艺长,至少应在8h以上。这主要是因为硝化速率较有机污染物的去除率低得多,因而需要更长的反应时间。 (4)BOD5/TKN TKN系指水中有机氮与氨氮之和,入流污水中BOD5/TKN是影响硝化效果的一个重要因素。BOD5/TKN越大,活性污泥中硝化细菌所占的比例越小,硝化速率就越小,在同样运行条件下硝化效率就越低;反之,BOD5/TKN越小,硝化效率越高。很多污水处理厂的运行实践发现,BOD5/TKN值最佳范围为2~3左右。 (5)硝化速率 生物硝化系统一个专门的工艺参数是硝化速率,系指单位重量的活性污泥每天转化的氨氮量。硝化速率的大小取决于活性污泥中硝化细菌所占的比例,温度等很多因素,典型值为0.02gNH3-N/gMLVSS×d。 (6)溶解氧 硝化细菌为专性好氧菌,无氧时即停止生命活动,且硝化细菌的摄氧速率较分解有机物的细菌低得多,如果不保持充足的氧量,硝化细菌将“争夺”不到所需要的氧。因此,需保持生物池好氧区的溶解氧在2mg/L以上,特殊情况下溶解氧含量还需提高。 (7)温度 硝化细菌对温度的变化也很敏感,当污水温度低于15℃时,硝化速率会明显下降,当污水温度低于5℃时,其生理活动会完全停止。因此,冬季时污水处理厂特别是北方地区的污水处理厂出水氨氮超标的现象较为明显。 (8)pH 硝化细菌对pH反应很敏感,在pH为8~9的范围内,其生物活性最强,当pH<6.0或>9.6时,硝化菌的生物活性将受到抑制并趋于停止。因此,应尽量控制生物硝化系统的混合液pH大于7.0。
  • 《活性污泥和生物膜复合模型的建立与模拟》

    • 来源专题:农业立体污染防治
    • 编译者:季雪婧
    • 发布时间:2017-11-23
    • 针对近年来出现的城市污水处理厂活性污泥和生物膜复合工艺,首先建立了能同时描述碳氧化、脱氮和除磷的修正ASM1(Activated Sludge Model No.1),以及与ASM1中微生物生长过程速率方程结构形式相同、物理意义明确的生物膜模型。然后将该生物膜模型与修正的ASM1相结合,形成了活性污泥和生物膜复合模型,利用VB6.0编写了相应的模拟软件。以西安市第五污水处理厂复合工艺为对象,对其碳、氮和磷的去除进行模拟,结果表明该模型可以较好地反映出水各污染指标的变化规律。通过对进水流量、填料区的位置及填料区填料的投加率进行模拟,为填料区的优化和系统运行提出了建议。