《金属所科研人员发现固体庞压卡效应》

  • 来源专题:中国科学院亮点监测
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2019-03-30
  • 制冷技术在当今社会工农业生产、日常生活等多个领域均起到了至关重要的作用,联合国统计数据表明全球每年25-30%的电力被用于各种各样的制冷应用。而这些应用绝大部分依赖传统的气体压缩制冷技术,普遍使用对环境和人体有害的制冷剂。因此,寻求绿色、环保、低能耗的替代制冷方案已经成为学术界和工业界共同努力的方向。特别是当前我国高端制冷压缩机技术仍然欠缺,探索新的制冷技术方案则有望从根源上解决该技术领域的“卡脖子”问题。

      近年来,基于固态相变热效应(caloric effects)的固态制冷技术被认为是最有希望取代传统气体压缩制冷的技术方案。固态相变热效应主要包括磁卡效应(magnetocaloric effect,MCE)、电卡效应(electrocaloric effect,ECE)、弹卡效应(elastocaloric effect,eCE)以及压卡效应(barocaloric effect, BCE)。前三者分别源于相应外场对铁性体系(ferroics)中磁矩、铁电极化或晶体结构畴的有序度的调控,而后者则常常涉及压力诱导的晶体结构相变。固态相变制冷材料的性能主要由等温熵变所描述。固体压卡效应的制冷循环,如图1所示。遵循以上的物理认识,经过数十年的发展,主流固态相变制冷材料的等温熵变提高到了50 J kg-1K-1左右,且需要较大的外场,这成为该技术走向应用的障碍。因此,如何提高固态相变制冷材料的性能成为一个兼具物理意义和应用价值的研究课题。

    中国科学院金属研究所功能材料与器件研究部李昺研究员、张志东研究员、任卫军研究员等组成的研究团队在一系列称为塑晶(plastic crystals)的有机材料里发现了基于分子取向序的压卡效应,等温熵变最高达687 J kg-1K-1,较传统固态相变制冷材料高出了一个数量级,见图2。塑晶是一类高度无序的固体材料,其有机分子或者无机结构单元的取向完全无序,但是质心位置却构成了长程有序的晶格。在这些体系中,所需驱动压力极低,且材料十分廉价,具有诱人的应用前景。选择新戊二醇(英文名:neopentylglycol,缩写为NPG;分子式:C5H12O2;IUPAC名称为2,2-Dimethylpropane-1,3-diol)为模型材料,运用高压热测量技术、高压中子散射技术、高压同步辐射X射线衍射技术等,揭示了塑晶材料出现庞压卡效应的深层次物理机制。该项研究工作发表于Nature(Nature 567, 506 (2019),(https://doi.org/10.1038/s41586-019-1042-5),李昺研究员为该文的独立第一作者兼通讯作者。该杂志同期还刊登了评述性短文《Refrigeration based on plastic crystals》来阐述该项工作的内涵和意义。 

    金属所研究人员和日本大阪大学Takeshi Sugahara副教授合作,利用高压微量热仪测量了NPG在高压条件下的等温熵变,发现在45.0MPa压力下熵变已经达到最大值——389 J kg-1K-1,且在15.2 MPa下已经达到了最大值的一半(图3b)。这一驱动压力较传统压卡效应材料低很多,具有明显的应用优势。接下来,在日本大型同步辐射光源SPring-8 Saori I. Kawaguchi博士、Shogo Kawaguchi博士、Koji Ohara博士、陈艳娜博士、Osami Sakata教授的协助下,分别在BL02B2谱仪和BL04B2谱仪进行了高分辨同步辐射X射线衍射和高压同步辐射X射线衍射测量,发现压力可以驱动材料发生从无序到有序的相变(图3c)。最为关键地是在日本散裂中子源(J-PARC)中子科学部Kenji Nakajima主任、Yukinobu Kawakita副主任、Seiko Kawamura博士、Takanori Hattori博士和Tatsuya Kikuchi博士的全力支持和多方协调下,突破重重技术难关,在极短时间内成功实现了高压超高精度准弹性中子散射测量。利用世界上能量分辨率最高的冷中子时间飞行谱仪AMATERAS和特殊设计加工的高压样品腔,获得了高压环境下NPG样品的准弹性中子散射谱,直接从原子层次揭示了压力对分子取向无序的抑制是产生庞压卡效应的本质原因(图3d - g)。这一实验结果也被美国佛罗里达州立大学Shangchao Lin助理教授组的分子动力学模拟结果所证实(图3h,i)。同时与澳大利亚核科技组织(ANSTO)的Dehong Yu博士、Richard Mole博士合作,在时间飞行谱仪PELICAN上获得了完整的晶格动力学数据,发现了强烈非简谐特征。

    借助大科学装置的强大实验能力,该研究团队成功地确立了庞压卡效应的物理机制,从本质来源角度确认了庞压卡效应的发现。塑晶这一特殊物态,兼有晶体和液体的特征。巨大的分子取向无序导致了固态相变处的熵变比熔化熵还大,无序自由度在系统总自由度的占比接近维持固体刚性的极限;分子间的弱相互作用导致极大的压缩性,微小压力即可驱动相变;强烈的晶格非谐性使得晶格的压力效应得以转化为熵变。该研究中所报道的这些有机材料所需驱动压力小、成本低廉,具有明显的应用价值。同时,将塑晶引入固态相变制冷材料研究领域,将极大地丰富固态相变制冷研究的材料体系,为发现和设计性能更加优异的材料提供了可能。

      参与该项工作的还有台湾同步辐射研究中心驻ANSTO团队成员Shin-ichiro Yano博士、美国加州大学Irvine分校的王辉博士、北京高压科学研究中心的李阔研究员等。本工作得到了中国科学院“相关人才计划”、国家自然科学基金(11804346,51671192,51531008)的资助,也得到了J-PARC(2018AU1401,2018B0014)、SPring-8(2018B1095,2018A2061)和ANSTO的大科学装置机时支持。

相关报告
  • 《理化所等发现液态金属焊接纳米颗粒效应并获系列应用技术进展》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-10-13
    •         近期,中国科学院理化技术研究所与清华大学联合研究小组,首次报道了液态金属焊接纳米颗粒效应。在题为《基于液态金属模板电化学焊接效应实现薄层导电多孔纳米金属网》(Tang et al., Thin, Porous, and Conductive Networks of Metal Nanoparticles through Electrochemical Welding on a Liquid Metal Template, Advanced Materials Interfaces, 2018: 1800406)的论文中(封面文章),研究组首次发现,将包裹有金属纳米颗粒的液态金属小球置于碱性溶液中时,原本分散的颗粒会以自组织方式被连接成纳米多孔网状结构且易于剥离下来(图1)。究其原因,是在碱性溶液中,液态金属界面呈还原性,而铜纳米颗粒表面由于氧化会形成氧化物;二者在溶液中电化学势不同,体系于是发生电化学反应,由此造成纳米颗粒表面的氧化物被还原,进而导致新生成的金属铜将周围铜颗粒牢牢粘结到一起。这一过程如同经典的金属焊接一般,因此研究小组将其命名为“液态金属焊接纳米颗粒效应”。   颗粒网状物具有良好的机械强度,由此可将其从液态金属表面剥离开来并转移到其它基底上。通过测量这一类特殊的由金属颗粒组成的薄膜多孔材料的导电性,发现其与普通金属导电材料不同:体系中存在一种由电场导致的电阻降低特性;当电压过高时,测试电阻会突然增大数个量级,说明过高电压会导致颗粒网的导电性失效。深入研究揭示,造成电阻降低的原因在于外加电场下静电作用会使部分分开的颗粒网连接到一起增加了导电通路;而电阻骤升的原因则是大电流下电迁移作用增强,使得颗粒连接断开而失去导电能力。以上发现促成了利用液态金属编织微米厚度多孔导电颗粒网方法的建立,由此获得的新材料具有良好的机械强度和独特的电学性能。   此外,在联合小组发表的另一篇题为《铜离子激发的自生长液态金属蛇形运动》(Chen et al., Self-Growing and Serpentine Locomotion of Liquid Metal Induced by Copper Ions, ACS Applied Materials & Interfaces, DOI: 10.1021/acsami.8b07649)的论文中,研究组首次发现了一种崭新的自生长液态金属蛇形分散效应。在前期研究中,液态金属自驱动机器、表面Marangoni流动以及周期性自激振荡效应等现象相继被发现和解释。然而,因为液态金属巨大的表面张力,这些变形行为更多是作为一个整体呈现。此次发现的效应,则是一种不同于以往的大尺度液态金属离散变形与蛇形运动,革新了人们对液态金属空间构型转换方式的认识。   研究表明,在酸性铜盐溶液中,一团液态金属可以自发生长出大量细条状的伪足并像蛇一样运动(图2)。此现象背后的机理主要在于,因置换反应所形成的无数个微小的Cu-Ga原电池产生于液态金属和铜盐溶液界面处,这会改变液态金属的表面张力,从而产生不平衡的界面压差,最终导致了蛇形运动的发生。这里,溶液的酸性对实验结果影响巨大。在合适的酸性条件下,可通过调节酸性的强弱去控制蛇形液态金属的生成和运动速度。而且,此蛇形运动可被多次激发,大大增加了运动的持久性。研究进一步揭示,酸性铜盐溶液这一独特环境保证了无数的铜颗粒可以被持续稳定地析出和吞噬,此类动态平衡是蛇形分散运动现象得以发生的深层次原因。该现象丰富了液态金属物质世界的科学图景,进一步拓展了近年来兴起的液态金属柔性机器的理论与技术内涵。   除上述基础发现外,联合小组近期还在液态金属先进应用技术研究方面取得系列新进展,先后针对肿瘤治疗用生物医学新材料(图3,Wang et al., Advanced Healthcare Materials, 2018)、高性能电子墨水(图4,Chang et al., Advanced Materials Interfaces, 2018)、可穿戴医疗(图5,封面文章,Guo et al., Adv. Eng. Mater., 2018)、可拉伸皮肤电子(图6,Guo et al., Science China Technological Sciences, 2018)以及柔性机器人传感与控制(图7,Guo et al., Smart Materials and Structures, 2018)等新兴领域的紧迫现实需求发展出系列重要实用技术。   以上研究得到中国科学院院长基金与前沿科学项目及国家自然科学基金重点项目资助。
  • 《固体所在三重简并费米子半金属MoP中观测到压力诱导的超导电性》

    • 来源专题:中国科学院亮点监测
    • 编译者:yanyf@mail.las.ac.cn
    • 发布时间:2018-08-01
    •         近期,固体所迟振华副研究员与强磁场科学中心及物理所科研人员合作,在高压条件下首次在一种全新的拓扑材料——三重简并费米子半金属MoP中观测到超导现象。相关研究成果发表在自然合作期刊《NPJ量子材料》(npj Quantum Materials 3, 28 (2018))上。   拓扑材料是近几年凝聚态物理领域的研究热点之一。根据电子结构的不同,拓扑材料可以分为拓扑绝缘体、拓扑半金属和拓扑超导体。三者的不同之处在于拓扑绝缘体和拓扑超导体的体态是全能隙的绝缘态,而拓扑半金属的体态在费米面附近存在零能隙的简并点或线。目前,实验已发现的拓扑半金属包括狄拉克(Dirac) 半金属、外尔 (Weyl) 半金属、节线 (nodal-line) 半金属等。拓扑半金属可展示线性巨磁阻效应、超高载流子迁移率、极高电导率、高热电势等宏观量子现象,在低能耗电子学器件方面有潜在的应用前景,迅速成为量子材料领域崭新的研究热点和前沿。   寻找新型费米子成为近年来拓扑物态领域一个挑战性的前沿科学问题,也是该领域国际竞争的焦点之一。2017年,中国科学院物理所研究团队利用角分辨光电子能谱技术在具有碳化钨结构的MoP(磷化钼)单晶中首次观测到能带的三重简并点,附近准粒子激发被称为三重简并费米子,不同于四重简并的狄拉克费米子和两重简并的外尔费米子,首次实验证实存在传统类型以外的新型费米子,为固体材料中电子拓扑态研究开辟了新的方向。结果发表在(Nature 546, 627-631 (2017)),并入选两院院士评选的“2017年中国十大科技进展新闻”。   固体所迟振华副研究员与杨昭荣研究员研究团队合作,在自主搭建的高压综合测试平台上对物理所石友国研究员课题组提供的MoP单晶进行了系统的高压研究,实验结果表明:MoP在30 GPa左右从拓扑半金属转变成超导体,临界转变温度Tc为2.5 K左右,随着压力增大,Tc也随之升高,在95 GPa时升高到4 K。另外,在60 GPa以下,MoP的晶体结构非常稳定,表明受晶体结构对称性保护的拓扑非平庸电子态和超导态在30~60 GPa范围内有可能共存,实验结果与强磁场科学中心杨晓萍研究员的理论计算结果吻合。相关结果也为拓扑超导的实现提供了一种新的思路。   该工作得到了国家重点研发计划和国家自然科学基金等项目的资助。