《基因改良食物 — — 你需要知道哪些?》

  • 来源专题:食物与营养
  • 编译者: 潘淑春
  • 发布时间:2016-05-25
  • For thousands of years, crops and livestock with desirable characteristics have been grown and bred by humans. Changes in genetic make-up occur naturally between generations of plants and animals and, through selective breeding, traits favourable to our food supply can be enhanced. Recently, technology has allowed us to genetically modify our food faster, but is it safe and how is this regulated?.
    What are GMOs?Scientists are now able to identify and influence genes responsible for specific physical and metabolic traits.1 The process of transferring genes within or across species is called ‘genetic modification’. A ‘genetically modified organism’ (GMO) may be a plant, an animal, or a microorganism whose genetic make-up has been modified using biotechnology.The first generation of GMOs were crops designed to have improved agronomic traits that were mainly of benefit to the farmer, such as increased resistance to herbicides, insects, disease or drought.2 Second generation GM crops have delivered more tangible benefits for consumers, such as improved food quality and increased nutrient bioavailability.3GM crops represent a valuable means to address socio-economic challenges in an ever-changing world of growing global populations, climate change and, possibly, future food shortages. Micronutrient deficiency, for example, remains a significant public health issue, for which biofortified GM crops may provide part of the solution - particularly in malnourished populations.3How are GMOs regulated?In the EU, GM food and feed are defined as those that contain, consist of, or are produced from GMOs.4,5Under EU law, all GMOs must be authorised before they can be cultivated or used as food or feed.5 A rigorous safety assessment is performed by the European Food Safety Authority (EFSA). The data required for the assessment includes data to demonstrate the product’s safety and risk assessments for humans, animals and the environment. The EFSA assessment is reviewed and voted by a committee of experts from each EU Member State. After 10 years, the authorization can be renewed after taking into account any newly available data.5GMOs are among the most scrutinized food groups in the EU and consumers can be assured that the safety assessment is adequate and approved GMOs are as safe as their conventional counterparts. If evidence of a possible risk to humans, animals or the environment was ever to emerge, measures are in place to rapidly withdraw any implicated product and suspend/modify its authorisation.5,6 To date, no adverse effects on human health have been observed as a result of consumption of authorised GMO foods.7Labelling and Traceability of GMOsA label mentioning the GM origin is required if more than 0.9% of a food, or ingredient, is derived from an authorised GM source. Below this threshold operators must be able to supply evidence that the presence of any GMO is unintentional or technically unavoidable.5 ‘GM-free’ labels can be used voluntarily – as long as they do not mislead the consumer. A label must not claim that a food product possesses special characteristics when all similar foodstuffs possess such characteristics.1 For example, it is misleading to label orange juice as GMO-free, since there are currently no GM oranges on the market anywhere.GMOs, and any products containing them, are labelled and their origins are traceable throughout the food supply chain.5,8 Moreover, everyone involved in the supply chain must keep records of all transactions of GM food/feed over a five year period; this ensures that products could be tracked if evidence of an unexpected risk was ever to emerge.8,9 The European Commission has established an online public register where citizens can search for information on authorized GMOs.10What is currently authorized in the EU?There is one GM crop that is currently approved for cultivation, insect-resistant maize. It is currently grown in small quantities in Spain, the Czech Republic, Portugal, Romania and Slovakia.11 Legislation passed in 2015 allows individual member states to restrict or ban cultivation of EU-approved GM crops in their own territories.12,13As of January 1st 2016, there were 61 GMOs authorised for marketing as food or feed in the EU. These GMOs are not cultivated on EU territory, but food and feed can contain them from imported sources.

相关报告
  • 《食物辐照与食物安全常见问题解答》

    • 来源专题:食物与营养
    • 编译者:李晓妍
    • 发布时间:2021-03-24
    • 食品安全与检验局(FSIS)是美国农业部的公共卫生机构,负责确保全国商用肉类、家禽和蛋类产品的安全、卫生和正确的标签与包装。 什么是食物辐照?——食品辐照是一种控制食品腐败、消灭食源性病原体的技术。结果与巴氏杀菌法相似。食品辐照和巴氏灭菌的根本区别在于用于消灭微生物的能量来源。肉类和家禽的辐照是在政府批准的辐照设施中进行的。辐照不能替代肉类和家禽工厂良好的卫生和过程控制,是一种额外的安全措施。 辐射食品安全吗?——辐射食品是安全的。辐照可以减少有害细菌和寄生虫的数量,从而使肉类和家禽更加安全。食品辐照不会使食品具有放射性。经过辐射的食品有益健康,有营养。在美国,食品和药物管理局负责监管食品辐照。此外,食品辐照还得到了美国医学协会、世界卫生组织和国际原子能机构的正式认可。 哪些食物被辐射?——FDA于1963年首次批准使用辐射技术杀死小麦和面粉中的害虫。迄今为止,美国食品及药物管理局和美国农业部已经批准对水果、蔬菜、香料、生家禽和红肉进行食品辐照。 我如何知道肉类及家禽产品是否经辐射处理?——消费者不能通过视觉、嗅觉、味觉或感觉来识别辐照过的食品。通过在包装上标明国际辐照标志以及“辐照处理过”或“辐照处理过”等字样,即可识别辐照食品。 如何处理辐照肉类及家禽?——食品辐照不能代替良好的卫生条件,也不能代替安全的烹饪和处理。消费者应该像处理其他食品一样处理辐照食品,并始终遵循安全的食品处理方法。
  • 《转基因与基因编辑植物的比较》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2018-12-26
    • 人们很容易看到大量高档餐厅和杂货店推销非转基因生物产品,并得出结论,食用转基因生物对你的健康有害。反转基因运动有效地激起了人们的恐惧和忧虑,其经常援引令人怀疑的“科学”理论,并遵循“预防原则”,就是说即使没有可信的科学理由来避免转基因食品,它们仍然应该被避免,因为未来某个时候可能会发现其缺点。这个组织严密、资金充足的反转基因运动有效地淹没了支持转基因组织的论点,包括对农业可持续性的重大全面改善。 一些反对转基因运动的人士认为,有必要对某些育种技术(包括基因编辑)进行更多的审查和监管。欧盟最近裁定,基因编辑作物在监管方面应该像转基因生物一样对待,这引起了更大的混乱。 欧盟的这项裁决要求使用CRISPR和其他基因编辑工具创建的植物与转基因生物相同,并受到同样严格的规定。但是,该裁决也有一个例外,不包括使用具有长期安全记录的常规诱变技术开发的植物。 这项裁决令人头疼,迫切需要理解所涉及的科学。那么,什么是基因编辑?它与转基因或转基因作物有什么不同吗?如果基因编辑的作物无法与传统植物育种培育的作物区分开来,那它们又如何被调控呢? 基因编辑和创造转基因生物是有区别的。理解这种区别对于做出对消费者和投资者以及对全球粮食供应的未来有利的选择至关重要。从对诱变作用的更好理解开始。 突变作为鉴定优良植物品种的历史手段 事实是:只要我们吃植物,我们人类就食用转基因食品。 自发突变-DNA中的变化或突变-总是自然发生的。这是由于自然辐射,如紫外线或宇宙射线,化学反应,或DNA复制错误。当DNA的这种化学变化发生在植物编码重要信息的基因组的一部分时,这种变化通常是有害的。但有时,这种改变是有益的,并且由此产生的突变植物比其亲本更好。 人类已经选择改良的突变植物至少9000年了。包括玉米、西瓜和桃子在内的现代作物与它们的野生祖先有着根本的不同,这是人类长期选择优质作物进行植物育种的结果。早期的农民会选择具有有利突变的作物系,如更大的谷物、更美味的水果,或其他理想的特性(比如,一种大葫芦可用作容器)。年复一年,最好的植物种子被保存和重新种植。农民们总是在寻找好种子,就像今天一样。经过多代人的杂交育种农民创造了遗传改良和更强壮、产量更高的作物。从本质上讲,几千年来,农民一直在对作物进行基因改造,至少是通过选择突变体和仔细杂交不同品种。 这些传统的方法今天仍在使用。此外,近90年来,植物育种家采用了新的方法来提高产生突变的效率,目的是选择改良的品种。从1930年左右开始,包括X射线、伽马射线、紫外线和中子在内的各种辐射被用于“诱变”植物种群,以产生高频率的诱变植物突变体,育种者可以从中选择。从20世纪40年代开始,芥子气和类似的化合物被用作另一种产生突变体的方法。甚至在今天,化学物质如甲烷磺酸乙酯(EMS)和类似的化合物通常被用来产生突变体植物群体。这些方法是有用的——2004年发表的一篇高被引文章估计,来自诱变群体的2250多种植物品种已经公开。 “自发”或“诱导”植物突变的一个关键方面是突变的过程是随机的。现在,有一些为植物引入变异的方法不是随机的,而是高度计划的。 这些是精密的基因编辑工具,如CRISPR/Cas9、归巢核酸内切酶(“巨核酸酶”)、寡核苷酸定向诱变和锌指核酸酶,它们都可以用来产生突变,这些突变与自发或诱导群体所鉴定的突变无法区分。 引导理想的突变 我们正在基因组测序和分析技术上经历着快速的进步,价格急剧下降,能力也逐年增加。这意味着植物科学家和育种家能够识别出关键需要的突变,而这些新的基因编辑工具能够对植物品种进行精确的编辑。相对于开发突变体品种和将多个期望的突变组合成同一植物品种所需的传统植物育种步骤,这在时间和资源上具有很大的优势。利用该技术对植物进行改良有着重大的兴趣,包括Calyxt、Precision Biosciences和Pairwise在内的公司都致力于利用基因组编辑来开发和交付改良的植物品种。 虽然这些工具中的每一个都有不同的机制,但是改变本身原则上与自发的、自然的突变是无法区分的。在最终产品中,没有异物的痕迹残留,并且编辑过的生物体的基因组基本上与以前相同。