《Nature | 自私冲突是RNA介导的亲代起源效应的基础》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-03-13
  • 2024年3月6日,奥地利科学院分子生物技术研究所等机构的研究人员在Nature发表题为Selfish conflict underlies RNA-mediated parent-of-origin effects的文章。

    基因组印记——母系和父系基因组的不等同——是许多植物和哺乳动物物种独立进化的关键过程。根据亲属关系理论,印记是相互冲突的选择力作用于差异表达的亲本等位基因的必然结果。然而,这些表观遗传差异最初是如何进化的,人们知之甚少。

    该研究报告鉴定和分子解剖的父母的起源影响基因表达,可能有助于澄清这个基本问题。毒素解毒剂元素(TAs)是一种自私的元素,通过毒害非携带者而在群体中传播。在两个热带隐密线虫野生分离株的互交中,研究人员发现慢-1/生长-1 TA在父系遗传时特别失活。这种亲本起源效应源于piwi相互作用RNA (piRNA)宿主防御途径对慢-1毒素的转录抑制。这种抑制需要PIWI Argonaute和SET-32组蛋白甲基转移酶活性,并通过小RNA进行跨代遗传。值得注意的是,当母体遗传slow-1/ growth -1时,母体mRNA的翻译无关作用停止了slow-1的抑制。也就是说,加载到鸡蛋中的slow-1转录本——而不是slow-1蛋白——是抵消pirna介导的抑制所必需和充分的。

    该研究结果表明,亲本起源效应可以通过piRNA途径的共同选择而进化,并阻碍需要性才能繁殖的自私基因的传播。

相关报告
  • 《Nature | 外切核酸酶介导的mRNA转录终止的结构基础》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-04-01
    • 2024年3月27日,中国科学院分子植物科学卓越创新中心/中国科学院合成生物学重点实验室张余研究组在Nature上发表题为Structural basis of exoribonuclease-mediated mRNA transcription termination 的研究论文。 转录是基因表达的第一步,是调控基因表达的重要环节。基因转录按照RNA的合成过程分为转录起始,转录延伸和转录终止三个阶段。近年来转录起始和转录延伸的机制逐渐被揭开,然而转录终止的机制尚未阐明。 该研究揭示了酵母mRNA转录终止的分子机制。研究团队利用含有磷硫键修饰的不同长度RNA组装了包含Rat1-Rai1、Pol II、DNA和RNA的转录终止前复合物,重构了Rat1-Rai1缩短RNA的中间态过程,并解析了上述中间状态的复合物结构。研究团队发现外切酶Rat1-Rai1稳定结合在Pol II的RNA通道外侧,能够直接将Pol II合成的mRNA引导到其Rat1催化中心进行切割。并且,外切酶的结合位置和Pol II的转录延伸因子互相重叠,外切酶结合促使延伸因子Spt4/5/6解离。
  • 《Nature | 转录-复制冲突导致对 PARP 抑制剂敏感性》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-28
    • 2024年3月20日,日内瓦大学等机构的研究人员在Nature在线发表题为Transcription–replication conflicts underlie sensitivity to PARP inhibitors的文章。该研究阐明了PARP抑制剂的作用机制,尤其是其在用于治疗携带BRCA基因突变的乳腺癌和卵巢癌患者中。他们发现,抑制剂能阻断PARP蛋白的两种特定活性,通过阻断其中一种,对癌细胞的毒性作用就能得到维持,同时还能不影响健康细胞的功能,研究人员旨在帮助改善这些疗法的治疗疗效。 尽管每天都有成千上万个损伤会破坏我们的DNA,但由于高效修复系统的存在,我们的细胞中的基因组尤为稳定,在编码修复蛋白的基因中就有BRCA1和BRCA2(BReast CAncer 1 和2的简写),其会参与到DNA双螺旋的断裂中,这些基因中突变的存在(大约每1000名女性中就会有2名)会导致受损的DNA无法被修复,从而就会大大增加机体患乳腺癌和卵巢癌的风险,对于男性而言则会增加其患前列腺癌的风险。PARP抑制剂用来治疗这些类型的癌症大约15年时间了,PARP蛋白能检测DNA双螺旋中的断裂或异常结构,随后其会短暂地吸附在DNA上并合成一条糖链,并以其作为警报信号来招募参与DNA修复的蛋白质。 基于PARP抑制剂的疗法能阻断这些活性并将PAPR蛋白捕获在DNA上,这样就不会出现诱发DNA修复的警报信号了。然而事实证明,这种疗法对于诸如癌细胞等快速生长的细胞具有一定的毒性,因为癌细胞会产生太多的突变且并没有时间进行修复,因此其注定会发生死亡。但我们的机体也是快速生长的健康细胞的宿主,比如造血干细胞(红细胞和白细胞的来源),其能作为附带的受害者,也会被抗PARP疗法大量破坏。目前研究人员并不清楚抗PAPR药物杀死细胞(癌变或非癌变)背后的分子机制。 这项研究中,研究者Thanos Halazonetis等人就解析了PAPR抑制剂发挥作用的分子机制,他们利用两种类型的PARP抑制剂,其同样能阻断PAPR的酶活性(即作为警报信号的糖链的合成),但并不会以相同的强度将PAPR困在DNA上,随后研究者观察到,这两种抑制剂能以相同的效率来杀灭癌细胞,但能将PAPR与DNA进行弱结合的抑制剂要对健康细胞的毒性小得多。 PARP疗法的第二种活性则会导致DNA上的PARP紧密结合(捕获),从而就会导致需要被细胞修复的DNA损伤的出现,但这种修复并不是由BRCA修复蛋白所介导的,因此,正常细胞和癌细胞都会被杀死。研究者发现,对酶类活性的抑制或许足以杀死癌细胞,而当PAPR与DNA强烈结合时,这种捕获也会杀死正常细胞,而这或许是由这些药物的毒性引起的。 相关研究结果或能帮助研究人员开发出更安全的PAPR抑制剂,从而抑制PARP的酶活性且不会将其困在DNA上。综上,本文研究结果表明,抑制PAPR的酶类活性或许足以在同源重组缺乏的情况下达到治疗疗效。