《岛礁地下淡水透镜体的形成与演化过程研究取得新进展》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2020-06-20
  • 中国科学院南海海洋研究所边缘海与大洋地质重点实验室综合地球物理探测与岩石圈热演化研究团队,对岛礁地下淡水透镜体的形成演化过程研究取得新进展,相关研究成果最近发表在《水文学杂志》上。硕士研究生盛冲为该论文第一作者,导师许鹤华副研究员为通讯作者。

    淡水透镜体(Freshwater lens)是指在岛屿的地下,有一块像凸透镜一样,中间厚四周薄的淡水层。淡水透镜体既是岛礁环境的重要组成部分,也是海岛生态系统物质和能量运转的重要载体。作为岛礁上最为有限的资源之一,合理认识与利用这一地下淡水资源,对维护整个岛礁生态系统的安全具有重要的现实意义。

    研究人员结合前人的典型岛礁地质剖面,利用地下水数值模拟手段系统展开了淡水透镜体形成机理方面的研究,力图揭示淡水透镜体从无到有这一过程。研究发现岛礁地下淡水透镜体的形成可以分为三个阶段:最初为淡水透镜体的准备阶段(Preparatory phase),主要是自然因素对珊瑚砂的淋滤去除了其部分盐分,为淡水透镜体的形成奠定了基础。此后,随着大气降雨的不断入渗补给,岛礁地下淡水透镜体开始形成且厚度逐渐增加,这一阶段可称之为形成阶段 (Formation stage),其所需时间主要取决于淡水透镜体的形成速率。第三为稳定阶段(Steady stage),此时岛礁下方的淡水透镜体的厚度不再发生明显增加,主要随着潮汐和降雨量的变化等呈现出周期性的上下浮动。

    模拟研究还发现淡水透镜体的形成过程主要受两种动力学机制的影响,一种是长时间尺度的动力学机制,主要受控于大气降雨的入渗补给及地下水的向海排泄。即淡水透镜体的内部流速较大且从岛礁中央指向边缘,不断将因弥散进入的咸水向外推移,以维持淡水透镜体的产生及存在。另一种是短时间尺度的动力学特征,主要由潮汐产生,造成淡水透镜体的垂直震荡,加剧了咸淡水之间的弥散作用。该研究有助于完善岛礁淡水透镜体的理论体系,为岛礁生态环境建设提供理论支撑。

    该研究由中国科学院战略性先导科技专项(XDA13010303)、南方海洋科学与工程广东省实验室(广州)(GML2019ZD0104)项目和国家自然科学基金(91428205, 41376061)共同资助完成。

    相关论文信息:https://doi.org/10.1016/j.jhydrol.2020.124641

  • 原文来源:http://www.scsio.ac.cn/xwzx/kydt/202006/t20200618_5608746.html
相关报告
  • 《南沙珊瑚岛礁钻探与构造演化研究取得进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-05-21
    • 南海是我国四大海中唯一发育洋壳的海盆,是板块边缘俯冲-张裂形成的特殊类型的边缘海。厘清南海的构造演化历史对于认识板缘型边缘海成因、完善板块构造理论具有重要意义。南沙地块的裂离与南海海盆扩张是紧密相连的构造演化过程。近年来中国科学家在南海海盆(IODP 349航次)和北部陆缘(IODP 367和368/368X航次)领导实施的国际大洋钻探逐渐揭示了南海海盆的扩张历史。然而,由于南海南部构造地层学研究程度较低,尤其缺乏科学深钻,对于南沙地块裂离的时代和过程了解非常有限。 在中国科学院战略性先导科技专项任务的支持下,中国科学院南海海洋研究所颜文研究员和黎刚研究员领导的“海洋环境地球化学”等研究团队,以厘清南沙地块裂离历史为主要科学目标之一,2017年在南沙群岛南缘珊瑚岛礁实施完成了“南科一井”科学钻探。该井是目前南海南部第一口穿透礁体的全取芯科学深钻,总进尺2020.2米,取芯率达到91%,成为目前南海乃至世界岛礁全取芯深度最大的科学钻井。近期,研究团队在“南科一井”构造地层学方面的研究成果陆续发表在国际著名地学期刊Geological Society of America Bulletin(《美国地质学会会刊》)、Sedimentary Geology(《沉积地质学》)和Journal of Asian Earth Sciences(《亚洲地球科学》)上。 研究团队在“南科一井”下部300多米厚的碳酸盐岩中发现了大量颜色鲜艳的杂色沉积,如此密集的杂色沉积层在南海珊瑚礁钻井中鲜有报道。研究团队围绕“杂色沉积的致色机理及其成因”系统开展了微观岩相学、矿物学和地球化学分析,证实“南科一井”杂色沉积层致色的主要因素是微量的赤铁矿,其形成主要源于礁体暴露后大气降水淋滤和富集碳酸盐矿物晶格中的Fe。“南科一井”中大量杂色次生碳酸盐岩的形成是由于美济环礁长期暴露剥蚀而造成的。研究指出,“南科一井”杂色沉积成因的揭示对于认识珊瑚岛礁演化和南沙地块的构造历史具有非常重要的价值。   为厘清珊瑚岛礁抬升-剥蚀的历史及其与南沙地块构造演化的关系,研究团队针对“南科一井”珊瑚礁碳酸盐岩开展了高密度的Sr同位素测年,结合国际新兴的碳酸盐岩激光原位U-Pb年代和有孔虫生物地层,深入解析了中新世南沙地块俯冲-碰撞过程及其对南沙群岛南缘珊瑚岛礁发育演化的影响。研究确定“南科一井”538.6 米处的暴露面附近约九百万年的地层缺失主要与南沙地块和沙巴-巴拉望岛弧碰撞相关,指出南海南部陆缘从俯冲碰撞转为构造沉降发生在距今11个百万年,明显晚于南海海盆扩张结束的时间(15个百万年)。“南科一井”新的年代地层学研究更新了前人所认为的“南海南部弧-陆碰撞的结束是直接由南海海盆扩张结束所导致”的观点,并推断南海南部中中新世的构造转型可能主要与吕宋岛弧向北迁移有关。 同时,为树立南沙海域第一口岛礁标准地层剖面,研究团队还开展了高分辨率岩芯扫描、地球化学、矿物学分析以及大量岩石薄片鉴定,以“南科一井”的地层序列首次命名了南沙海域碳酸盐岩渐新世以来6个主要地层单元。集合了古生物地层、Sr同位素地层以及最新的激光U-Pb定年方法,多方法确定了南沙群岛首个珊瑚礁新生代碳酸盐岩地层的年代框架,将为研究南海南部碳酸盐岩台地的发育演化奠定基础。 该研究得到了中国科学院战略性先导科技专项(A类)、科技部重点研发计划重点专项项目、南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项项目、国家自然科学基金、中国科学院青年创新促进会以及王宽诚教育基金经费资助。同时,感谢参与“南科一井”野外科学钻探的全体工程技术和科研工作人员!   相关论文信息: Li, G., Xu, W.H.*, Luo, Y., Liu, J.G., Zhao, J.X., Feng, Y.X., Chen, J., Sun, Z., Xiang, R., Xu, M., and Yan, W. * (2022). Strontium isotope stratigraphy and LA-ICP-MS U-Pb carbonate age constraints on the Cenozoic tectonic evolution of the southern South China Sea. Geological Society of America Bulletin, https://doi.org/10.1130/B36365.1.(黎刚等关于“南科一井”年代地层学与南沙地块构造演化研究) Luo, Y., Li, G. *, Xu, W., Liu, J., Cheng, J., Zhao, J., & Yan, W. * (2021). The effect of diagenesis on rare earth element geochemistry of the Quaternary carbonates at an isolated coral atoll in the South China Sea. Sedimentary Geology 420, 105933. https://doi.org/10.1016/j.sedgeo.2021.105933.(罗云等关于美济礁体第四纪地层学研究) Cheng, J., Wang, S. *, Li, G., Xu, W., Yan, W.*, Luo, Y., Tian, Y., & Wang, M. (2022). Origin of large-scale variegated reef limestones in the southern South China Sea: Implications for Miocene regional and global geological evolution. Journal of Asian Earth Sciences 230, 105202. https://doi.org/10.1016/j.jseaes.2022.105202.(程俊等关于“南科一井”杂色沉积层成因研究)
  • 《突破 | 半导体所在氮化物位错演化机制及光电神经网络器件研究领域取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2024-07-24
    • III-族氮化物多采用蓝宝石衬底异质外延生长,由于大的晶格失配和热失配,导致高密度穿透位错(108-1010),极大地影响氮化物发光器件、电子电力器件性能。中国科学院半导体研究所刘志强研究员团队长期聚焦氮化物生长界面研究并形成系列研究成果,明确了原子尺度氮化物/蓝宝石生长界面构型,阐明了原子尺度界面应力释放机制。近期,半导体所刘志强研究员团队与北京大学高鹏教授,福州大学吴朝兴教授、郭太良教授,韩国汉阳大学Tae Whan Kim教授团队合作,在氮化物位错演化机制及光电神经网络器件研究领域取得新进展。 当前对于穿透位错的有效抑制手段有限且低效。为了进一步揭示氮化物生长界面的原子尺度位错演化过程,有效降低穿透性刃位错密度,半导体所刘志强研究员团队与北京大学高鹏教授团队开展合作,对GaN /Al2O3界面进行了平面高分辨透射电子显微镜(HRTEM)分析,同时观察到了摩尔图案(Moiré patterns)变形和失配位错的终止;并对摩尔图案变形区域进行原子级表征,基于原子结构以及伯格斯矢量分析,确定导致摩尔图案变形的缺陷类型为穿透刃位错,从而证明外延层中的穿透刃位错起源于界面处失配位错的融合反应(图1-2)。 基于此氮化物穿透位错演化机制的新理解,研究人员构建了滑移界面,降低了滑移势垒,引入了新的应力释放途径,从而揭示了氮化物生长界面位错原子级演化过程,提出了从源头上抑制位错生成的外延新思路,最终实现GaN外延层穿透刃位错密度降低近一个数量级。 基于高质量外延材料的氮化物光电器件是实现类脑神经网络的技术路线之一。半导体所刘志强研究员团队与福州大学吴朝兴教授,郭太良教授、韩国汉阳大学Tae Whan Kim教授团队合作,构建了基于高质量nano-LED的人工感知神经网络,模拟了人类神经系统中的多通路信号传递过程。 人脑神经元的应答是即时、高度并行、复杂输出的,构建仿生神经形态电子系统是类脑计算领域的重要研究课题。在交流脉冲驱动下,nano-LED生成具有记忆效应的电致光信号脉冲,利用光脉冲波形中的特征波峰对多个分布式传感器的电信号进行编码,并在人工感知神经网络中无串扰同步传输。构建的人工感知神经网络成功模拟了人脑的触觉感知,识别准确率达到98.88%。 图1 GaN/Al2O3界面STEM-HAADF刃位错直接观测图像及原子结构示意 图2 GaN/Al2O3界面穿透刃位错演化机制 图3 基于记忆电致发光的传入神经系统示意