《中国工程科学:海岸带地区典型地质灾害链研究进展与展望》

  • 来源专题:岩土力学与工程信息资源网
  • 编译者: 李娜娜
  • 发布时间:2025-07-01
  • 海岸带地区资源丰富、经济发达、人口密集,受气候环境变化、人类活动等的共同影响,区域性地质灾害易发且分布广泛,尤其是单一灾害持续演变而触发形成的链式灾害,对确保海岸稳定和沿海城市安全带来较大威胁。

    研究人员综合分析了全球海岸带地区面临的典型地质灾害如海岸侵蚀、浅层气活动、近海海底滑坡的研究现状,全面梳理了其概念内涵、灾害分布、破坏机理与防治措施,总结归纳了地质灾害研究的主要监测技术、力学理论、物理模型和数值模拟方法,并梳理了各自的适用条件和发展瓶颈。研究发现,海岸侵蚀、浅层气活动、近海海底滑坡多发生于同一区域,具有同源链和因果链的相关性,即海岸带持续侵蚀可以引起浅层气的泄漏或者直接导致海底滑坡,而地质层内的浅层气大量泄漏又可能触发海底滑坡。为防治海岸带地区的地质灾害链,及时“阻源断链”,提出了海岸带地区地质灾害监测预警的发展策略,建议在人口密集的海岸带地区构建“空天地海”多维一体化监测系统,开展大数据与数值模拟的机理研判,结合人工智能提升灾害链预警预报能力,以期为海岸带地区城市安全和地质灾害源头治理提供参考。

  • 原文来源:http://kns.cnki.net/kcms/detail/11.4421.G3.20250623.0849.002.html
相关报告
  • 《中国科学院烟台海岸带研究所在海岸带地面沉降遥感监测研究中取得新进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-10-18
    • 快速的城市发展和地下水资源过度开采导致地面沉降现象频发,由此引发的地质灾害已成为全球关注的热点问题之一。地面沉降现象及其带来的危害在沿海地区表现更为突出:增加风暴潮灾害和海水入侵风险,降低城市防汛功能,地下水咸化和耕地盐渍化等,给海岸带地区的社会经济发展、人类生存生活带来严重威胁。传统地面沉降监测方法,如水准测量、GPS测量等,野外周期长、监测点离散,无法实现大面积、高分辨率、高重复性的监测。利用合成孔径雷达干涉测量(InSAR)手段可实现大面积、高精度、连续性的地面沉降监测工作。通过长时间序列的SAR数据与相应的处理和分析,能够有效去除干涉相位中的轨道、大气、DEM误差、低相干性等因素的不利影响,使得InSAR从大尺度监测扩展到缓慢小尺度形变应用监测。 中国科学院烟台海岸带研究所侯西勇研究员团队基于InSAR理论与技术方法,利用SAR卫星数据与时序InSAR方法,包括永久散射体干涉测量(PS-InSAR)和短基线集干涉测量(SBAS-InSAR)技术,对中国海岸带典型沉降区进行了遥感监测研究,对比分析了其沉降时序变化、地面形变场的强弱趋势和空间展布等特征。 研究发现,天津地区的地面沉降遥感反演结果(2017-2019)显示,天津市区地表沉降速率已控制在较低水平,但天津市西郊地面沉降现象仍较为严重,很多城镇区域沉降速率已超过50 mm/year。上海促淤造地新成陆区的地面沉降遥感监测结果(2007-2010,2017-2020)显示,新成陆地区域存在不均匀沉降现象,随着时间的推移沉降速率逐渐变缓;近海地区的沉降比内陆地区更为显著,沉降严重区域(>25 mm/year)主要集中在滴水湖周边及海堤区域。 研究证明,常用于城市沉降监测的PS-InSAR技术,可以实现新成陆区(人造地物较少)大范围、长时间序列的地面沉降遥感监测工作,此外,研究还发现,由于PS-InSAR与SBAS-InSAR方法对地物检测的灵敏度不同,在同一沉降区域其反演结果会略有差异。开展中国海岸带城市的地面沉降遥感监测工作,能够为海岸带开发建设、城市淹没风险评估等研究提供数据与技术支持,具有较强的理论与现实意义。 上述研究工作得到了中国科学院战略性先导科技专项“地球大数据科学工程”子课题“海岸带气候变化风险综合评估与决策支持系统”(No. XDA19060205)等科研项目的资助。 代表性论文: Dong Li, Bin Li, Yuxin Zhang, Chao Fan, He Xu, Xiyong Hou*. Spatial and temporal characteristics analysis for land subsidence in Shanghai coastal reclamation area using PS-InSAR method. Frontiers in Marine Science, 2022, 9:1000523. DOI: 10.3389/fmars.2022.1000523 Dong Li, Xiyong Hou*, Yang Song, Yuxin Zhang, Chao Wang. Ground Subsidence Analysis in Tianjin (China) Based on Sentinel-1A Data Using MT-InSAR Methods [J]. Applied Sciences, 2020, 10(16), 5514. DOI: 10.3390/app10165514
  • 《中国科学院烟台海岸带研究所在近海低氧形成机制及生态效应方面取得系列研究进展》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2023-07-16
    • 健康的海洋生态系统依赖于充足的氧气供应,当海水中氧气的消耗速度快于补充速度就会导致低氧。海水低氧是危害近岸海域生态系统健康和海洋经济的全球性问题,高强度人类活动正在使这一问题变得日益严重。中国科学院烟台海岸带研究所典型河口海湾海岛生态系统健康及调控研究组群、中国科学院牟平海岸带环境综合试验站以山东半岛北部养马岛附近海域为代表性研究区域,经过多年研究,在近海低氧形成机制及生态效应方面中取得了系列重要进展。研究团队相继在Environmental Research、Science of the Total Environment、Chemosphere等刊物发表论文6篇。 该海域是北黄海重要的筏架式扇贝养殖区和底播式海参养殖区,近年来该海域夏季底层水体溶解氧(DO)浓度过低现象频繁发生,造成了巨大经济损失,妨碍了当地海水养殖业的发展。研究团队聚焦于本海域日趋严重的低氧灾害问题,通过大量现场观测,并结合有针对性的实验室培养实验,探讨了季节性低氧的生消过程及其主要控制机制,评估了DO对生源要素碳、氮、磷、硅等地球化学循环过程的影响,揭示了低氧灾害的生态效应。 研究表明,水体层化和扇贝养殖活动的共同作用是导致养马岛附近海域底层水体夏季发生低氧灾害的重要因素;持续的高气温和低风速是造成该海域水体夏季出现层化的主导因素,扇贝养殖设施引起的水交换减缓则是水体分层和低氧发生的重要促进因素;温跃层厚度大于2.5 m、上边界深度在7.0 m以下的水体更易发生低氧;当底层水体的表观好氧量大于4 mg/L,即使没有跃层存在也能够发生低氧,说明层化虽然能够促进底层水体低氧的形成,但并非必不可少(Sun et al., ER 2023, 228: 115810)。温度是该海域海水中DO季节变化的主要驱动因素,夏季底层水体的DO下降速度约为表层水体的3~4倍,水体耗氧是DO支出的主要途径(Yang et al., MPB 2021, 173: 113092)。 扇贝养殖活动对底层水体夏季低氧形成的促进作用还体现在其对有机质迁移转化的影响。海湾扇贝的排泄作用将大量具有高分子量和低腐殖度特征的溶解有机质(DOM)释放到水柱中,改变了有机质的生物地球化学循环。海湾扇贝在一个养殖周期内(6月~11月)的排泄过程可使海水中溶解有机碳增加19.7 μmol/L,假设扇贝排泄的DOM中不稳定部分被完全耗氧分解,可使养马岛附近海域海水中DO和pH分别降低~13.4 μmol/L和~0.018(Yang et al., STOTEN 2022, 807: 150989),使水体总碱度降低75.7 μmol/kg,从而加速低氧和海水酸化的进程(Yang et al., STOTEN 2021, 798: 149214)。 上覆水体中DO浓度会影响沉积物有机质的好氧和厌氧分解模式,从而主导营养盐和荧光溶解性有机质(FDOM)的释放。当上覆水体中DO > 50 μmol/L时,有利于沉积物中铵氮、硅和FDOM的释放;当上覆水体中DO < 100 μmol/L时,会加速沉积物中磷的释放(Yang et al., Chmosphere 2021, 273:129641)。在夏季,低氧通过有机质矿化和铁结合态磷(Fe-P)还原促进了沉积物中磷向上覆水中迁移;相比之下,秋季水体的富氧状态促进了沉积物中Fe/Mn氧化物与磷酸盐共沉淀形成Fe-P(Yang et al., STOTEN 2021, 759: 143486)。 上述论文为中国科学院战略性先导科技专项(A类)“‘美丽中国’生态文明科技工程专项”子课题“海洋生态环境灾害综合防控技术与示范”(XDA23050303)的研究成果之一,由我所孙西艳和杨波为第一作者,高学鲁和赵建民研究员为通讯作者。研究结果可为近海低氧灾害预警预报和环境保护措施制定提供科学支撑,有助于提升我国近海环境灾害的预警及应对能力,支持海洋经济可持续发展。 相关论文详情: 1. Sun, X., Gao, X.*, Zhao, J.*, Xing, Q., Liu, Y., Xie, L., Wang, Y., Wang, B., Lv, J., 2023. Promoting effect of raft-raised scallop culture on the formation of coastal hypoxia. Environmental Research, 228: 115810. https://www.sciencedirect.com/science/article/pii/S0013935123006023 2. Yang, B., Gao, X.*, Zhao, J.*, Xie, L., Liu, Y., Lv, X., Xing, Q., 2022. The impacts of intensive scallop farming on dissolved organic matter in the coastal waters adjacent to the Yangma Island, North Yellow Sea. Science of The Total Environment, 807: 150989. https://www.sciencedirect.com/science/article/pii/S0048969721060678 3. Yang, B., Gao, X.*, Zhao, J.*, Liu, Y., Xie, L., Lv, X., Xing, Q., 2021. Summer deoxygenation in a bay scallop (Argopecten irradians) farming area: The decisive role of water temperature, stratification and beyond. Marine Pollution Bulletin, 173: 113092. https://www.sciencedirect.com/science/article/pii/S0025326X21011267 4. Yang, B., Gao, X.*, Zhao, J.*, Liu, Y., Lui, H.K., Huang, T.H., Chen, C.T.A., Xing, Q., 2021. Massive shellfish farming might accelerate coastal acidification: A case study on carbonate system dynamics in a bay scallop (Argopecten irradians) farming area, North Yellow Sea. Science of The Total Environment, 798: 149214. https://www.sciencedirect.com/science/article/pii/S004896972104287X 5. Yang, B., Gao, X.*, Zhao, J.*, Liu, Y., Xie, L., Lv, X., Xing, Q., 2021. Potential linkage between sedimentary oxygen consumption and benthic flux of biogenic elements in a coastal scallop farming area, North Yellow Sea. Chemosphere, 273: 129641. https://www.sciencedirect.com/science/article/pii/S0045653521001107 6. Yang, B., Gao, X.*, Zhao, J., Liu, Y., Gao, T., Lui, H.K., Huang, T.H., Chen, C.T.A., Xing, Q., 2021. The influence of summer hypoxia on sedimentary phosphorus biogeochemistry in a coastal scallop farming area, North Yellow Sea. Science of The Total Environment, 759: 143486. https://www.sciencedirect.com/science/article/pii/S0048969720370170