Modelling and Prediction of the 2019 Coronavirus Disease Spreading in China Incorporating Human Migration Data
14 Pages Posted: 5 Mar 2020
Choujun Zhan
South China Normal University - School of Computing
Chi Tse
City University of Hong Kong (CityUHK) - Department of Electrical Engineering
More...
Abstract
This study integrates the daily intercity migration data with the classic Susceptible-Exposed-Infected-Removed (SEIR) model to construct a new model suitable for describing the dynamics of epidemic spreading of Coronavirus Disease 2019 (COVID-19) in China. Daily intercity migration data for 367 cities in China are collected from Baidu Migration, a mobile-app based human migration tracking data system. Historical data of infected, recovered and death cases from official source are used for model fitting. The set of model parameters obtained from best data fitting using a constrained nonlinear optimisation procedure is used for estimation of the dynamics of epidemic spreading in the coming months. Our results show that the number of infections in most cities in China will peak between mid February to early March 2020, with about 0.8%, less than 0.1% and less than 0.01% of the population eventually infected in Wuhan, Hubei Province and the rest of China, respectively. Moreover, for most cities outside and within Hubei Province (except Wuhan), the total number of infected individuals is expected to be less than 300 and 4000, respectively.