《意大利科学家发明3D海洋观测新技术》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: zhoubz
  • 发布时间:2017-02-16
  • 意大利威尼斯大学和国家研究委员会海洋科学研究所的科学家们用电子眼观测开阔海洋的波浪,发现异常高海浪相比之前模型假设更为常见。相关文章已在JPO(Journal of Physical Oceanography)发表,并于亚得里亚海得到证实,其成果因涉及到所有海的波行为而具有全球范围的科学意义。此外,该研究催生了波形采集立体系统(Waves Acquisition Stereo System,简称Wass)的项目和专利,以及一种由计算机视觉与海洋学相结合的可实时传输轮船和移动平台测量信息的新技术。

    环境科学部人工智能教授Andfrea Torsello解释说:“最困难的在于测量海洋这种移动表面,需要安装在运动浮体上的摄像机不断改变角度。不过,经历了两年的发展和开放水域测量,我们最终成功了。” 风暴中极限波的波高超过有效波高的两倍,知道极限波的实际发生频率至关重要,不仅对改进极限波理论的海洋学家有利,也能惠及到海上船只和平台的设计者。Wass利用了人工智能,将两个同步数码照相机固定在海面上,识别三维空间中的立体公共点。从观测点导出的数据结合统计模型的结果,用数值代码(代码为开放源码)处理后重建3D海面。操作者通过远程遥控可以在屏幕上看到三维重建的波浪,更重要的是,可以得到数千平方米波面的实时数据。

    (傅圆圆 编译)

  • 原文来源:http://oceanleadership.org/new-technology-watch-sea-3d
相关报告
  • 《科学家发明新技术以简化药物开发》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-10-08
    • 409/5000 乔治·梅森大学(George Mason University)的研究人员发现了两种蛋白质的确切位置,这些蛋白质负责将癌细胞隐藏在免疫系统之外。 与现有的静脉内治疗剂相比,该发现提供了开发新的癌症免疫治疗药物的新颖方法,该药物可以丸剂形式给药。 研究结果于2019年7月发表在《生物化学杂志》上。 根据应用蛋白质组学和分子医学中心以及生物健康创新研究所的研究人员,研究的主要作者阿曼达·海蒙德(Amanda Haymond)的说法,这项发现是由美国国家癌症研究所创新基金资助的内部研发的蛋白质绘画技术得以实现的。分子分析技术(IMAT)程序。 IMAT项目负责人托尼·迪克伯(Tony Dickherber)表示:“ IMAT的目??标是支持创造新技术,使科学家能够在癌症研究中进行前所未有的变革性发现。” 在美国国立卫生研究院的资助下开发的蛋白质绘画技术确实具有变革性。该过程始于两种或多种蛋白质结合在一起,从而驱动疾病。科学家使用小分子染料来绘画结合的蛋白质,然后一种称为变性的化学反应将它们切碎。最后一步是科学家使用质谱仪识别未上漆的区域,即蛋白质接触的区域。 早期药物发现中的当前技术,例如晶体学,通常很复杂,昂贵且耗时。蛋白质绘画技术专门识别蛋白质-蛋白质接触点,突出了药物开发所遵循的理想位置和配方。配方以及该技术可以对药物进行快速性能测试的事实,意味着可以在几天(而不是几年)内产生结果。 为了取得成功,梅森团队需要扩大界限。 该团队在新文章中描述了他们如何增强技术,报告了一种新型蛋白染料的开发和优化,该蛋白染料已在临床相关蛋白复合物PD-1和PD-L1上成功进行了测试。 该出版物还揭示了新的发现,这些发现从化学上破译了染料与蛋白质相互作用的方式,这几十年来一直是科学家的一个谜。 海蒙德说:“使用蛋白质绘画技术的秘诀是拥有具有正确结构的完美染料分子,使其紧密结合在蛋白质上。” ——文章发布于2019年10月7日
  • 《科学家成功3D打印不锈钢》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2017-11-03
    • 3D打印技术已然风靡全球,但目前与这项技术结合最好的是塑料和泡沫钢材料,而这些材料却不够结实,不能满足核心材料的应用需求。如今,研究人员已经开发出了一种3D打印坚韧和灵活的不锈钢的技术,这一进步可能会带来更快、更廉价的方法,从而制造出从火箭发动机到核反应堆和油井设备零部件的所有产品。 不锈钢是在150年前发明的,至今仍广受欢迎。它是由传统的钢结构熔化而成的——其自身是铁和碳(有时是其他金属,如镍)的混合物,并加入铬和钼,用以防止生锈和腐蚀。在不锈钢的制造过程中,一系列复杂的冷却、再加热和轧制的步骤,使得材料的微观结构紧密地排列在一起,即合金的颗粒与颗粒之间形成了一种类似于细胞的结构。当金属被弯曲或受压时,颗粒中的原子层彼此滑动,有时会形成晶质缺陷,从而导致裂纹的产生。但是牢固的颗粒边界可以阻止这些缺陷,使材料变得坚硬,并且仍然足够灵活,形成一个想要的形状。 长期以来,3D打印研究人员一直试图复制这种结构。他们的计划始于一个涂抹在平整表面上的金属合金颗粒粉层。 在这项研究中,一种由计算机控制的高性能激光束在表面上来来回回地扫描。被激光击中的颗粒熔化并融合在一起。随后,这一表面向下移动,紧接着,另一层粉末被添加进来,之后,激光加热过程再次重复,将新熔化的材料粘在下面的一层上。通过重复这种逐层添加法,工程师们可以制造复杂的结构,比如火箭发动机。 然而问题依然存在——在微观层面上,3D打印的不锈钢通常都是高孔隙度的,这也使得它们很脆弱并且容易断裂。 “这些钢材的性能很糟糕。”Yinmin “Morris” Wang说,他是美国加利福尼亚州劳伦斯·利弗莫尔国家实验室的材料科学家。几年前,Wang和他的同事提出了一种方法,利用激光和一种快速冷却的技术将金属合金粒子融合在一个密集而紧凑的结构中。 如今,他们通过设计一个由计算机控制的程序扩展了这项工作,使其不仅能够制造致密的不锈钢层,而且可以更为严格地控制这些材料的结构——从纳米级到微米级。这就使得3D打印机可以在每一个尺度上构建微小的细胞壁式结构,从而防止破裂和其他常见问题。 测试表明,在某些条件下,最终的3D打印不锈钢材料的强度要比传统工艺生产的不锈钢高3倍且仍然具有韧性。 科学家在10月30日出版的《自然—材料》杂志上报道了这一研究成果。 “他们所做的事情真的很令人兴奋。”宾夕法尼亚州匹兹堡市卡内基·梅隆大学机械工程师Rahul Panat说。此外,Panat指出,Wang和他的同事使用了一种在市场上可以买到的3D打印机和激光设备完成了这项工作。这使得其他研究团队很可能迅速效仿他们的做法,制造出各种各样的高强度不锈钢部件——从飞机的油箱到核电站的压力管。同时,还可能增加人们对3D打印的热情。 3D打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可黏合材料,通过逐层打印的方式来构造物体的技术。3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件出现。该技术在珠宝、鞋类、工业设计、建筑、工程和施工、汽车、航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支等领域都有所应用。