《科学家成功3D打印不锈钢》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2017-11-03
  • 3D打印技术已然风靡全球,但目前与这项技术结合最好的是塑料和泡沫钢材料,而这些材料却不够结实,不能满足核心材料的应用需求。如今,研究人员已经开发出了一种3D打印坚韧和灵活的不锈钢的技术,这一进步可能会带来更快、更廉价的方法,从而制造出从火箭发动机到核反应堆和油井设备零部件的所有产品。

    不锈钢是在150年前发明的,至今仍广受欢迎。它是由传统的钢结构熔化而成的——其自身是铁和碳(有时是其他金属,如镍)的混合物,并加入铬和钼,用以防止生锈和腐蚀。在不锈钢的制造过程中,一系列复杂的冷却、再加热和轧制的步骤,使得材料的微观结构紧密地排列在一起,即合金的颗粒与颗粒之间形成了一种类似于细胞的结构。当金属被弯曲或受压时,颗粒中的原子层彼此滑动,有时会形成晶质缺陷,从而导致裂纹的产生。但是牢固的颗粒边界可以阻止这些缺陷,使材料变得坚硬,并且仍然足够灵活,形成一个想要的形状。

    长期以来,3D打印研究人员一直试图复制这种结构。他们的计划始于一个涂抹在平整表面上的金属合金颗粒粉层。

    在这项研究中,一种由计算机控制的高性能激光束在表面上来来回回地扫描。被激光击中的颗粒熔化并融合在一起。随后,这一表面向下移动,紧接着,另一层粉末被添加进来,之后,激光加热过程再次重复,将新熔化的材料粘在下面的一层上。通过重复这种逐层添加法,工程师们可以制造复杂的结构,比如火箭发动机。

    然而问题依然存在——在微观层面上,3D打印的不锈钢通常都是高孔隙度的,这也使得它们很脆弱并且容易断裂。

    “这些钢材的性能很糟糕。”Yinmin “Morris” Wang说,他是美国加利福尼亚州劳伦斯·利弗莫尔国家实验室的材料科学家。几年前,Wang和他的同事提出了一种方法,利用激光和一种快速冷却的技术将金属合金粒子融合在一个密集而紧凑的结构中。

    如今,他们通过设计一个由计算机控制的程序扩展了这项工作,使其不仅能够制造致密的不锈钢层,而且可以更为严格地控制这些材料的结构——从纳米级到微米级。这就使得3D打印机可以在每一个尺度上构建微小的细胞壁式结构,从而防止破裂和其他常见问题。

    测试表明,在某些条件下,最终的3D打印不锈钢材料的强度要比传统工艺生产的不锈钢高3倍且仍然具有韧性。

    科学家在10月30日出版的《自然—材料》杂志上报道了这一研究成果。

    “他们所做的事情真的很令人兴奋。”宾夕法尼亚州匹兹堡市卡内基·梅隆大学机械工程师Rahul Panat说。此外,Panat指出,Wang和他的同事使用了一种在市场上可以买到的3D打印机和激光设备完成了这项工作。这使得其他研究团队很可能迅速效仿他们的做法,制造出各种各样的高强度不锈钢部件——从飞机的油箱到核电站的压力管。同时,还可能增加人们对3D打印的热情。

    3D打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可黏合材料,通过逐层打印的方式来构造物体的技术。3D打印通常是采用数字技术材料打印机来实现的,常在模具制造、工业设计等领域被用于制造模型,后逐渐用于一些产品的直接制造,已经有使用这种技术打印而成的零部件出现。该技术在珠宝、鞋类、工业设计、建筑、工程和施工、汽车、航空航天、牙科和医疗产业、教育、地理信息系统、土木工程、枪支等领域都有所应用。

  • 原文来源:http://news.sciencenet.cn/htmlnews/2017/11/392815.shtm;http://news.sciencenet.cn/htmlnews/2017/11/392815.shtm
相关报告
  • 《科学家3D打印心脏瓣膜》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-09-01
    • 近日,美国明尼苏达大学研究人员开发了一种突破性方法,用多材料3D打印出心脏主动脉瓣及其周围结构的逼真模型,该模型能模仿真实的外观和感觉。8月28日,相关论文刊登于《科学进展》。 这些针对患者的器官模型,包括集成到结构中的3D打印软传感器阵列,后者是使用专门的墨水和定制的3D打印过程制造的。这些模型可用于为微创手术做准备,以改善全球数千名患者的预后。 研究人员用3D打印技术制造了所谓的主动脉根,即主动脉离心脏最近并与心脏相连的部分。主动脉根部包括主动脉瓣和冠状动脉开口。主动脉瓣有3个被称为瓣叶的皮瓣,周围有一个纤维环。该模型还包括部分左心室肌和升主动脉。 “我们的目标是提供不同的工具帮助医生了解准确的解剖结构和具体病人的心脏情况。”明尼苏达大学机械工程教授Michael McAlpine说,“医生可以在真正的手术之前进行测试,并帮病人更好地了解自己的解剖结构和手术过程。” 这个器官模型是专门为一项叫做经导管主动脉瓣置换术的手术准备的。在这个手术中,一个新的瓣膜被放置在患者原本的主动脉瓣内。 该手术用于治疗一种叫做主动脉瓣狭窄的疾病。这种疾病发生时,心脏主动脉瓣变窄,无法完全张开,从而减少或阻碍血液从心脏流向主动脉。(唐一尘) 相关论文信息:https://doi.org/10.1126/sciadv.abb4641
  • 《华人团队研发3D打印不锈钢获突破》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-12-21
    • 人民网斯德哥尔摩12月19日电 近日,英国伯明翰大学在材料科学顶级期刊Materials Today上发表了3D打印不锈钢材料的论文。产业化道路上长期困扰科研人员的难题。该成果是由瑞典斯德哥尔摩大学、英国伯明翰大学和浙江大学联合组成的一个跨国界跨学科的科研团队研发而成。国家“相关人才计划”特聘专家沈志坚是斯德哥尔摩大学团队的主要负责人。 “3D打印原理貌似简单,要想实现产业化,却有很多技术问题有待解决,其中一个主要挑战就是打印出来材料的质量稳定性问题。简单地说,就是打印的部件可不可靠,能不能用,会不会出问题?” 3D打印是全球范围高技术竞争的一个热点,它制约着以数字化为基础的"工业4.0”以及 “智慧制造”的发展进程。普遍认为,3D打印出的材料性能不如传统锻造甚至于铸造的材料。但是,此次研究成果显示其以点线面体层层叠加形式构建材料的过程完全颠覆了以往的材料制造方法,能制造出使用传统方法难以制造甚至于无法制造的零件,大大增加了设计的自由度,打印出的不锈钢性能不仅远远好于锻造的钢材,还“顺带”解决了材料学的基础问题。 谈到和中国团队的联合研发,沈志坚表示:“中国的优势在于有很多的机构和大量的研究人员,有巨大的潜在市场。通过分工合作,发挥合众优势,中国完全有可能弯道超车,走到国际前沿。”“增材制造的原理不难理解,也一点不新,古代大器型陶瓷器,如兵马俑,都是通过堆泥的方式制造的,先人使用的就是增材制造原理,将工匠的双手换成数控机械臂就是现代版的增材制造了。”(王文)