《科学家发现抑制肺癌转移的代谢小分子》

  • 来源专题:科技大数据监测服务平台
  • 编译者: zhoujie
  • 发布时间:2019-06-28
  • 科学家发现抑制肺癌转移的代谢小分子. . 肺癌是全世界也是我国发病率和死亡率最高的恶性肿瘤,其死亡率居高不下的重要原因就是癌细胞转移。 中国科学院分子细胞科学卓越创新中心杨巍维研究团队与中国科学院大连化学物理研究所李国辉团队合作的一项最新研究,揭示细胞代谢产物——尿苷二磷酸葡萄糖可以有效抑制肺癌转移,为肺癌转移的监测和阻断提供了新的靶点和生物标志物。该成果于6月27日凌晨在线发表于国际权威学术期刊《自然》。 致命的威胁:癌细胞转移 据统计,90%以上的癌症死亡是由癌细胞转移造成的。传统手术以及术后放化疗可以有效控制原发肿瘤,但对发生转移的肿瘤往往束手无策。以往研究表明,代谢异常是恶性肿瘤的重要特征。这些异常的代谢可重塑肿瘤细胞以增强其生长和存活,但其是否以及如何支撑肿瘤转移却鲜为人知。 杨巍维告诉《中国科学报》,人体内有一个可以促进癌症快速转移的蛋白质Snail(蜗牛),正常情况下它的mRNA会被细胞内的一类“切割”酶降解,Snail也“自身难保”。但当Snail的mRNA与另一种名为HuR的蛋白质结合后,Snail则变得更加稳定,令“切割”酶“无从下手”。杨巍维说,“Snail在这个时候就真的淡定如‘蜗牛’了。”但对患者而言,就是癌症转移,带来的后果是不堪设想的。 严密的追捕:亦正亦邪的“HuR蛋白” 对于“蜗牛”的命运从被降解到“助纣为虐”的发展历程,杨巍维进一步解释说,这里面有个关键的角色,亦正亦邪的“HuR蛋白”。正常细胞中的HuR蛋白多与尿苷二磷酸葡萄糖紧紧“绑定”,这个时候HuR蛋白是“守法公民”。但在肺癌细胞中,尿苷二磷酸葡萄糖脱氢酶的第473位酪氨酸发生高度磷酸化,与HuR蛋白结合后,催化原本被HuR紧紧“绑定”的尿苷二磷酸葡萄糖反应生成尿苷二磷酸葡萄糖醛酸,并“解绑”HuR蛋白。“解绑”后的HuR蛋白,瞬间变成了“黑帮老大”,与Snail的mRNA结合,提高了Snail的稳定性,犹如为它打开了“保护伞”,增强了肿瘤细胞的迁移能力,进而促进了肺癌转移。 研究人员深入分析临床数据发现,肺癌患者体内的尿苷二磷酸葡萄糖含量与肺癌的转移复发密切相关。相比原发病灶,转移灶中肺癌组织的尿苷二磷酸葡萄糖含量急剧降低;更为重要的是,发生远端转移的肺癌患者的血液样本中尿苷二磷酸葡萄糖含量也显著降低。此外,他们还发现肺癌组织中尿苷二磷酸葡萄糖脱氢酶第473位酪氨酸磷酸化水平越高,发生肺癌转移的几率越大,且患者的预后越差。 希望的曙光:癌症转移诊断和治疗 这项研究首次揭示了尿苷二磷酸葡萄糖抑制肿瘤的新功能及其作用机制,为肺癌转移的诊断提供了首个生化标志物,有助于肿瘤早期转移的发现。对此,杨巍维说:“我们希望这项研究能为肺癌患者癌肿转移提供诊断依据,今后我们也会将研究进行拓展,让更多肿瘤一旦转移就能被及时发现,及时治疗。” 谈及此项研究对于肺癌转移的治疗价值,杨巍维坦言:“我们团队也尝试了给小鼠注射适量的尿苷二磷酸葡萄糖,发现抑制肺癌转移效果很明显。我们希望这项发现能为转移肺癌的治疗新药研发提供新思路。”

相关报告
  • 《STM:科学家发现可以有效抑制癌症转移的新药》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-05-29
    • 癌症转移仍然是造成癌症病人死亡的首要原因,主要是由于目前缺乏特殊的有效的抑制剂以抑制这个复杂的过程。 为了找到可以选择性靶向转移状态药物,来自美国堪萨斯大学和西北大学等机构的研究人员使用核周室(perinuclear compartment,PNC,一种与癌细胞转移行为相关的复杂细胞核结构)作为生物标记物对140000种结构不同的化合物进行了高通量筛选。 研究人员发现通过优化筛选出来的药物Metarrestin可以降解多种癌细胞系中的PNCs,可以在体外抑制癌细胞侵袭。同时研究人员还发现这种药物可以抑制三种人癌症小鼠移植模型发生转移,可以在没有可检测到的副作用的情况下延长转移性胰腺癌小鼠模型的生存期。 进一步研究显示Metarrestin扰乱了核仁的结构,抑制了RNA聚合酶1的转录,在一定程度上是通过与翻译延长因子eEF1A2相互作用来发挥作用。 因此,研究人员认为Metarrestin代表着一类治疗转移性癌症的很有前景的药物。
  • 《科学家发现深海微生物分子如何成为“抗癌武器”》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2022-03-29
    • 加州大学圣迭戈分校斯克里普斯海洋研究所多年的实验室工作揭示了一种海洋细菌如何制造出有效的抗癌分子。抗癌分子salinosporamide A,也被称为Marizomb,正处于III期临床试验中,用于治疗胶质母细胞瘤(一种脑癌)。科学家们首次了解了激活该分子的酶驱动过程。研究发现一种名为SalC的酶形成了该团队称之为salinosporamide抗癌"武器"的关键。相关研究成果已发表在《自然化学生物学》(Nature Chemical Biology)杂志上。 这项工作解决了一个近20年来的谜题,即海洋细菌如何制造salinosporamide分子所特有的性质,并为未来的生物技术打开了制造新型抗癌剂的大门。现在科学家们了解了这种酶是如何制造salinosporamide A的特性的,在未来这一发现可以用来利用酶生产其他类型的salinosporamide,不仅可以攻击癌症,还可以攻击免疫系统疾病和寄生虫引起的感染。 1990年,斯克里普斯海洋研究所研究人员从热带大西洋沉积物中收集到了salinosporamide A和产生该分子的海洋生物。该药物研发过程中的一些临床试验也是在加州大学圣地亚哥分校健康中心的摩尔斯癌症中心进行的。研究中的一个主要问题是要找出有多少种酶负责将分子折叠成其活性形状。是多种酶还是只有一种酶?研究人员最终确定是SalC。salinosporamide分子具有穿越血脑屏障的特殊能力,这是它在胶质母细胞瘤的临床试验中取得进展的原因。该分子有一个小而复杂的环状结构。它起初是一个线性分子,然后折叠成一个更复杂的圆形。大自然制造它的方式非常简单。化学家不能像自然界那样制造这种分子,但大自然用一种酶就能做到。这种酶在生物学中很常见,它参与人体脂肪酸以及微生物中红霉素等抗生素的产生。SalC酶执行的反应与正常的酮合成酶非常不同。正常的酮合成酶是一种帮助分子形成线性链的酶。相比之下,SalC通过形成两种复杂的反应性环状结构来制造salinosporamide。化学家很难在实验室里制造这两种结构。有了这些信息,科学家们现在可以对这种酶进行变异,直到找到有希望抑制各种类型疾病的形式。 研究中所涉及的海洋细菌被称为Salinispora tropica,它制造salinosporamide以避免被其捕食者吃掉。但是科学家们发现,salinosporamide A也可以治疗癌症。他们已经分离出了其他的salinosporamide,但是salinosporamide A具有其他物质所缺乏的特征-包括使其对癌细胞有害的生物活性。如果科学家们能够设计出一种与 salinosporamide 稍有不同的salinosporamide A呢?一种对易患癌症的蛋白酶体的抑制作用较差,但对免疫蛋白酶体的抑制较好的药物?这样salinosporamide可能是一种高度选择性的治疗自身免疫性疾病的方法。获得这种复杂环状结构的酶SalC为将来研究打开了大门。(张灿影  编译)