《Effect of COD/TP ratio on biological nutrient removal in A2O and SBR processes coupled with microfiltration and effluent reuse potential》

  • 来源专题:生物质生化转化信息监测
  • 编译者: giecinfo
  • 发布时间:2016-03-29
  • Two bench-scale hybrid processes, anaerobic/anoxic/oxic (A2O) reactor and sequencing batch reactor (SBR), each followed by the microfiltration (MF) system, were simultaneously operated to compare their performances on the removal of organics and phosphorus from both synthetic and real wastewater to further explore the potential for effluent reuse. The effects of different influent chemical oxygen demand (COD) to total phosphorus (TP) ratios (27, 50, 80, and 200) were investigated. For both processes, when the influent COD/TP ratio was 200, the effluent quality was satisfactory for some reuse potential. The MF membrane system showed an evident further removal of COD (20–89%) and color (18–60%), especially the removal of suspended solids (SS) and turbidity with the final effluent SS <1?mg/L and turbidity <0.1 NTU. When real wastewater was tested, the effluent quality was adequate and met the standard goals for regional reuse purposes.

相关报告
  • 《倒置A2O工艺与常规A2O工艺的比较》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-12-31
    • 两种工艺的比较 1. 脱氮效果比较 常规A2/O工艺由于好氧池出水回流到缺氧池,因此在好氧池中生成的硝态氮被反硝化去除。除氨氮和总氮效果非常好。但由于反硝化反应需要在有足够碳源的条件下完成,污水在经历过前端厌氧过程后,有机物已不同程度的被降解,若原污水有机物含量低,反硝化将受到一定影响。 倒置A2/O工艺,有无内回流对氮的去除效果影响比较大,虽然此工艺缺氧段碳源已经不是制约因素,无内回流的工艺脱氨氮比较好,但脱总氮的效果不好,因为在好氧池形成的硝态氮没有被完全反硝化脱除。具有内回流的工艺脱氨氮和总氮效果很好,是比较理想化的脱氮工艺。 2. 除磷效果比较 常规A2/O工艺除磷不好,因为厌氧环境受各方面的影响,首先原污水进入厌氧池,其中含有一定量O2,其次,从二沉池回流的污泥中含有硝态氮。这两个制约因素使厌氧环境并不处于严格的厌氧状态,使其首先进行一段缺氧过程,导致厌氧时间不够,影响PAOs释磷,进而影响好氧阶段磷的摄取,影响除磷效果。 倒置A2/O工艺由于将厌氧好氧位置交换,回流的硝态氮被完全反硝化去除,厌氧环境不受其他因素的影响,所以此工艺除磷效果比较好。但由于PAOs厌氧释磷需要碳源,前段缺氧反硝化亦需碳源,所以若原水有机物含量低,污水到达厌氧阶段时,有机物含量已经很低,可能会影响工艺的除磷效果。 3. 池容的比较 为使工艺效果达到最佳,规定所有工艺外回流比R=1和内回流比r=4。厌氧释磷要达到最好的效果,PAOs必须在厌氧环境呆够1小时。微生物在池中的停留时间跟水力停留时间有关,而污染物在水中的停留时间不与回流比、流态和池形等因素有关,对于一个特定的工艺是一定值。 对于图1所示常规A2/O要达到处理效果其厌氧体积至少为2Q(Q为污水流量),缺氧时间至少为1小时,那缺氧池体积最少1Q,好氧时间8小时,即好氧池体积8Q,总体积为11Q。对于图2所示工艺,缺氧区体积1Q,厌氧区体积6Q,再加上好氧区的体积8Q,一共15Q。图3所示工艺池体总体积跟常规工艺一样为11Q。 可以看出倒置A2/O要达到好的处理效果,设内回流时体积比常规工艺要大,但倒置A2/O工艺由于工艺特点,可适当缩短初沉时间或取消初沉池。 4、工艺优化 1. 对于常规A2/O工艺,其缺点在于厌氧时间不够,因此可以适当增大厌氧区的体积,或在回流污泥回流到厌氧池之前增设预缺氧池。 2. 可以采用分点进水的方式来对常规A2/O改进。一部分直接进厌氧池,剩余部分以分点方式进入缺氧池和好氧池,因为在缺氧和好氧池分点进水,形成局部的缺氧好氧环境,硝化和反硝化交替进行。氮被脱除完全,回流污泥中含硝态氮很少,不对厌氧阶段的释磷产生影响。而且厌氧释磷和后续缺氧反硝化都有足够的碳源支持。 3. 对于已有的氧化沟工艺,要想增强其的除磷能力,可以考虑改成倒置A2/O。 4. 对于NH3-N含量不高或对总氮脱除率要求不高的,无内回流的倒置A2/O工艺最适合。
  • 《全球变暖提升北极地区N2O排放》

    • 来源专题:土壤、生物与环境
    • 编译者:李卫民
    • 发布时间:2016-11-23
    • The Arctic is warming rapidly, with projected temperature increases larger than anywhere else in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C) and nitrogen (N). Warming of arctic soils and thawing of permafrost thus can have substantial consequences for the global climate, as the large C and N stores could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming. The impact of warming on the release of CO2 and CH4 is currently a hot topic in numerous studies carried out in the Arctic. Previous research of the Biogeochemistry research group at the Department of Environmental and Biological Sciences, University of Eastern Finland, has shown, however, that arctic soils are further a relevant source of the strong greenhouse gas N2O -- nearly 300 times more powerful than CO2 in warming the climate. The relevance of this finding, and a potentially even larger N2O release in a warming Arctic, is now being addressed by researchers of the same research group. These results are recently published in Global Change Biology. The study provides the first field-based evidence that arctic N2O emissions increase when the Arctic is warming; and that hampered plant growth plays a substantial role in regulating Arctic greenhouse gas exchange. Besides the increased emissions of N2O, the authors observed significant increases in the seasonal release of CO2 and CH4 as a result of only a mild temperature increase, and dug deeply into the reason behind the observed changes by detailed soil and vegetation measurements. One of the major conclusions drawn from this study, with potential far-reaching implications, is that even mild air warming of less than 1°C is triggering greenhouse gas production at depth: enhanced input of labile organic substances from the soil surface, transported to deeper soil layers via leaching, greatly influences arctic greenhouse gas biogeochemistry. Since leaching processes as well as arctic N2O emissions are not yet well incorporated in Arctic biogeochemical climate models, they pose a challenge for future research.