《宁波材料所在极端环境用环硅氧烷-碳硼烷聚合物方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-01-27
  • 有机硅是应用最广泛的有机无机杂化材料之一,有耐高温、耐候、防水防腐等特性。材料的耐温性一直以来都是人们关注的重点,尤其随着近代工业的发展,国防、航天航空等领域对高分子材料耐温性的需求不断提高。针对上述问题,早在上个世纪60年代,Olin公司就研发出引入碳硼烷结构的硅氧烷聚合物。碳硼烷由于其特殊的二十面体笼型结构在高温下具有良好的能量稳定性,可稳定聚硅氧烷从而进一步提高其耐温性与抗氧化能力。后续多有学者利用碳硼烷这一特性不断探索提高有机硅耐温性的方法,如添加不饱和基团提高聚合物交联度,引入Sn桥增加聚合物重复单元、提高分子量等。然而现有硅氧烷-碳硼烷聚合物主链多使用链状硅氧烷,高温下难以避免主链回咬成环,造成聚合物耐温性和抗氧化性能受限。

      近日,中国科学院宁波材料技术与工程研究所先进能源材料工程实验室提出一种新型的碳硼烷-硅氧烷聚合物结构:以环硅氧烷代替链状硅氧烷抑制回咬,提高耐温性能。通过改变环硅氧烷和烯丙基碳硼烷的比例,可有效调控环硅氧烷-碳硼烷聚合物结构及其性能。该聚合物体系具有优异的耐温性能和抗氧化性能,由于硼原子的大量引入,该聚合物在空气环境中升温至1000℃仍有90%以上的残碳率。

      将环硅氧烷和烯丙基碳硼烷溶于四氢呋喃中配置成涂层溶液,可以对易氧化碳系材料进行涂层保护。经过环硅氧烷-碳硼烷涂层保护的碳泡沫和碳纤维的耐烧蚀性能均有明显提高,且涂层厚度为180nm左右即可实现对碳纤维的有效防护。环硅氧烷-碳硼烷聚合物作为涂层在高温环境下硼笼瓦解与氧气结合生成具有流动性的B2O3,可有效填补高温下的涂层缺陷从而进一步阻止内部碳纤维的氧化分解。

      该研究结果近期以“Poly(cyclosiloxane-carborane)s for Harsh Environments”为题在Polymer Chemistry发表(原文链接:https://doi.org/10.1039/D1PY01323H)。该论文第一作者为宁波材料所19级硕士研究生赵丽华,中国科学院宁波材料所李天昊博士为共同第一作者,宋育杰副研究员为通讯作者。该工作得到了宁波3315创新团队(2018A-03-A)、国家科学自然基金(51902319)以及中国科学院相关项目的资助。

  • 原文来源:http://www.nimte.ac.cn/news/progress/202201/t20220126_6349327.html
相关报告
  • 《宁波材料所在PVDF油水分离膜材料方面取得系列新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-04-26
    • 随着我国经济的快速发展,大量的含油污水被排放,同时海洋原油泄漏事件频发,对生态环境和人类的健康造成了严重威胁。传统油水分离方法主要包括气浮法、离心分离法、吸附和燃烧等,但均存在效率低、成本高、应用范围窄等缺点。超浸润分离膜由于具有结构可控性好、分离效率高和分离精度高的优点,目前成为油水分离领域的研究热点。近期,中国科学院宁波材料所刘富研究员团队(先进功能膜)在高性能聚偏氟乙烯(PVDF)油水分离膜方向取得了一系列新成果。   1)PVDF瞬时催化及油水分离膜。针对复杂体系的油水分离问题,以机械性能和热稳定性能优异的聚偏氟乙烯(PVDF)为基膜,制备得到具有微纳米多级组装结构的PVDF-AuNPs微反应器分离膜。首先利用聚多巴胺作为膜表面“功能涂层”,对PVDF基膜进行初步修饰,然后将AuNPs微球通过动态过滤的方法负载到PVDF的指状孔内,形成微反应器。所得膜能够对含有硝基苯酚的水包油复杂体系,实现瞬时的硝基苯酚催化降解和油水分离。该方法对于将油水分离膜应用于实际含油废水处理,起到了重要的推动作用。相关工作已经发表于Chemical Engineering Journal, 2018, 334,579,王建强副研究员和吴紫阳为共同第一作者,刘富研究员为通讯作者。   2)具有超稳定刚性浸润表面的柔性PVDF油水分离膜。针对通常聚合物微孔膜的表面微纳结构不稳定、在化学腐蚀及物理损伤下易蠕变及衰减的问题,通过仿生植物根系固定土壤模型,利用微孔PVDF膜表面的微纳结构限域固定TiO2纳米粒子,制备了具有刚性界面TiO2界面的柔性PVDF微孔膜。所得膜具有优异的稳定性,能够抵抗极端物理损伤(液压、手指擦拭、液氮淬火后砂纸磨擦)、高温和苛刻的化学腐蚀(强酸、强碱、强氧化剂次氯酸钠),并且能够连续有效分离含有表面活性剂的油包水乳液。在错流模式下,通过负载超亲水纳米TiO2粒子制备的PVDF膜,可实现水包油乳液的连续分离(通量达1700 ,分离效率>96%)(如图3)。 相关工作已经发表在Scientific Reports, 2017, 7: 14099,熊竹副研究员和林海波为共同第一作者,刘富研究员为通讯作者,文章发表后受到了同行的广泛关注,该论文是2017年Scientific Reports期刊阅读量最多的前100篇文章之一。   3)超大通量静电纺丝PVDF油水分离膜。除了油水废液的复杂性和膜界面稳定性的制约,油水分离膜往往也受限于膜的低通量和易污染性。针对该问题,团队采用静电纺丝技术,通过将静电纺丝和静电喷涂相结合,制备得到了具有超高通量的PVDF纳米纤维油水分离膜,具有独特的微米级纤维及纳米级微球复合的结构。将该膜应用于高粘度的十甲基环五硅氧烷包水体系时,渗透系数高达88166±652 (分离效率>99%),远高于已报道数据。该方法制备过程简单,无需复杂的表面改性过程,是一种适宜工业化生产的新方法。相关工作已经发表在Journal of Materials Chemistry A, 2018, 6, 7014-7020。浙江理工大学的吴金丹博士和硕士生丁雅杰是论文的共同第一作者,王建强副研究员、浙江理工大学王际平教授和刘富研究员为该工作的共同通讯作者。   上述系列研究工作受到了国家重点研发计划(2017YFB0309600)、国家自然科学基金(5161101025、51475449、51703233)、中国科学院青促会(2014258)和宁波市创新团队(2014B81004)等项目的资助支持。
  • 《宁波材料所在聚合诱导单体穿透单层石墨烯研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-10-10
    • 石墨烯为单层平面碳原子以sp2杂化方式紧密结合在一起形成的二维原子晶体,是有望制备同时具有高渗透率和高选择性分离渗透膜的理想材料,因此研究有机分子通过石墨烯的行为具有非常重要的意义。尽管文献中提出了许多理论预测,但由于没有任何缺陷的石墨烯对所有原子和分子大部分是不可穿透的,相当于高阻隔的“金钟罩”,因而现实中关于有机分子通过石墨烯的实验证据相当稀少。理论上预测,即使对于具有Stone-Wales缺陷的化学气相沉积(CVD)石墨烯,氦气分子也是无法透过的。 针对此,最近,德国德累斯顿工业大学教授Rainer Jordan课题组博士张涛及中国科学院宁波材料技术与工程研究所研究员陈涛课题组等多家单位的研究人员通过实验及理论预测提出了一个新思路,即表面引发可控自由基聚合可以诱导乙烯基单体作为“倚天剑”穿透单层石墨烯这一“金钟罩”( Nat. Commun. 2018, 9, 4051 )。在他们的研究中,引发剂可以选择性地键合到固体基体表面用以驱动单体的运动和后续补充。在单层CVD石墨烯将引发剂和单体隔离的条件下,证明了各种尺寸的乙烯基单体在引发剂的驱动下可以穿过单层CVD石墨烯并成功实现表面引发聚合。他们的研究发现,这是由于只有原子层厚度的石墨烯无法阻挡自由基引发剂和单体之间(以及催化剂)的库仑作用力,从而实现引发剂在石墨烯另一端对单体的驱动和迁移。同时,可控自由基聚合的特性使得单体可以稳定的速率连续地被输送到石墨烯的另一端,并在石墨烯覆盖的表面得到聚合物分子刷(如图)。最终,通过研究石墨烯覆盖的聚合物分子刷厚度和形貌可以计算多类型的单体通过单层石墨烯的行为和速率。 最终结果表明,各种尺寸的中性单体能够在可控自由基聚合的驱动下顺利通过单层自带缺陷位点的CVD石墨烯,并且CVD石墨烯的天然缺陷由于单体的穿过而大大增加,然而,由于电荷的相互作用,带正或负电荷的单体在穿过石墨烯时被严重阻隔,速度相当慢。有意思的是,当采用微图案化的引发剂阵列时,阴离子单体在被诱导在穿透石墨烯单层膜时能够选择性地将石墨烯切割成各种预先设定的大小微观图案,进而获得图案化的聚合物刷。通过对分子施加外部驱动力,可以实现分子量较大的聚合单体等有机分子通过单层CVD石墨烯,并且分子的电荷对穿透行为的影响大于分子本身的大小。这些研究为单层石墨烯的可穿透性提供了新的证据,也为其作为分子筛的潜在应用方面提供了新的思路。 以上工作得到国家留学基金委、国家自然科学基金(51573203)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)以及中国科学院海洋新材料与应用技术重点实验室等的资助。 表面引发可控自由基聚合诱导单体穿透石墨烯