《宁波材料所在聚合诱导单体穿透单层石墨烯研究方面取得进展》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-10-10
  • 石墨烯为单层平面碳原子以sp2杂化方式紧密结合在一起形成的二维原子晶体,是有望制备同时具有高渗透率和高选择性分离渗透膜的理想材料,因此研究有机分子通过石墨烯的行为具有非常重要的意义。尽管文献中提出了许多理论预测,但由于没有任何缺陷的石墨烯对所有原子和分子大部分是不可穿透的,相当于高阻隔的“金钟罩”,因而现实中关于有机分子通过石墨烯的实验证据相当稀少。理论上预测,即使对于具有Stone-Wales缺陷的化学气相沉积(CVD)石墨烯,氦气分子也是无法透过的。

    针对此,最近,德国德累斯顿工业大学教授Rainer Jordan课题组博士张涛及中国科学院宁波材料技术与工程研究所研究员陈涛课题组等多家单位的研究人员通过实验及理论预测提出了一个新思路,即表面引发可控自由基聚合可以诱导乙烯基单体作为“倚天剑”穿透单层石墨烯这一“金钟罩”( Nat. Commun. 2018, 9, 4051 )。在他们的研究中,引发剂可以选择性地键合到固体基体表面用以驱动单体的运动和后续补充。在单层CVD石墨烯将引发剂和单体隔离的条件下,证明了各种尺寸的乙烯基单体在引发剂的驱动下可以穿过单层CVD石墨烯并成功实现表面引发聚合。他们的研究发现,这是由于只有原子层厚度的石墨烯无法阻挡自由基引发剂和单体之间(以及催化剂)的库仑作用力,从而实现引发剂在石墨烯另一端对单体的驱动和迁移。同时,可控自由基聚合的特性使得单体可以稳定的速率连续地被输送到石墨烯的另一端,并在石墨烯覆盖的表面得到聚合物分子刷(如图)。最终,通过研究石墨烯覆盖的聚合物分子刷厚度和形貌可以计算多类型的单体通过单层石墨烯的行为和速率。

    最终结果表明,各种尺寸的中性单体能够在可控自由基聚合的驱动下顺利通过单层自带缺陷位点的CVD石墨烯,并且CVD石墨烯的天然缺陷由于单体的穿过而大大增加,然而,由于电荷的相互作用,带正或负电荷的单体在穿过石墨烯时被严重阻隔,速度相当慢。有意思的是,当采用微图案化的引发剂阵列时,阴离子单体在被诱导在穿透石墨烯单层膜时能够选择性地将石墨烯切割成各种预先设定的大小微观图案,进而获得图案化的聚合物刷。通过对分子施加外部驱动力,可以实现分子量较大的聚合单体等有机分子通过单层CVD石墨烯,并且分子的电荷对穿透行为的影响大于分子本身的大小。这些研究为单层石墨烯的可穿透性提供了新的证据,也为其作为分子筛的潜在应用方面提供了新的思路。

    以上工作得到国家留学基金委、国家自然科学基金(51573203)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)以及中国科学院海洋新材料与应用技术重点实验室等的资助。

    表面引发可控自由基聚合诱导单体穿透石墨烯

  • 原文来源:http://www.xincailiao.com/news/news_detail.aspx?id=296661
相关报告
  • 《宁波材料所在强耦合研究方面取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-19
    • 强耦合是存在于两个以上系统中相互作用的自然现象。当强耦合产生时,其系统在某些方面的特性与原始特性相比将会出现巨大差异,例如光学响应、电学响应与振动响应都会在强耦合时发生明显的改变。由于现阶段缺乏对此类现象的深入研究,导致其很难充分在实际问题中得到应用。但强耦合现象时材料特性产生的诸多变化有着很大的应用潜力,例如目前有研究表明利用强耦合现象可以对生物科技材料的化学反应速率与荧光光谱特性进行改性,从而满足所需的要求。   中国科学院宁波材料技术与工程研究所所属慈溪医工所Remo课题组与意大利技术研究所(IIT),路易斯安娜州立大学(美国)和中国吉林大学多方展开合作,通过研究改变J-聚合体中(两部分组成)一部分的浓度对强耦合现象的作用,深入了解了强耦合的作用机理。具体来说,研究者通过遵循静态和动态的研究方法,得到了达到Rabi分裂(高耦合强度)的最优条件。此项研究成果对将强耦合现象由基础科学转化为应用科学有着重要的意义,并为后续的研究提供了指导性的意见。该研究中,由动态分析方法得出的结果表明,建立一套完整的、可预计此类系统特性随时间变化的模型对强耦合现象的应用至关重要。   图1展示了在纳米结构器件与J-聚合体分子之间发生的强耦合现象。图1(左)为纳米结构器件的SEM图像,可以看出在金板表面规律排布着纳米孔(标尺为310 nm);图片中还包含了器件的示意图,纳米器件与J-聚合体分子具有相似的波长响应(约为630 nm);J-聚合体吸收峰与吸收峰强度随浓度的变化规律为,峰位均在630 nm周围,吸收峰强度随浓度的提高而增加)。图1(右)为J-聚合体与纳米器件组合后的吸收光谱图,可以看出,材料本征的吸收峰消失,新出现的吸收峰在570-600 nm与650-700 nm之间,吸收峰位置随聚合体浓度提高而发生更强的分裂。近年来,对于此种分裂的增强机理的研究逐渐成为热点。此项研究成果将为后续的研究提供指导性的意见。   该成果已发表在学术期刊Nanoscale上(IF=7.4)。标题为“The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays”(DOI:10.1039/C6NR01588C)
  • 《宁波材料所在高分子水凝胶驱动器方面取得新进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-09-18
    • 在亿万年的自然演化中,一些生物体逐渐发展出体色、形态等随环境变化的能力。其中,最典型的例子就是变色龙:它能够根据外部环境或情绪心理的变化来快速改变肤色,以达到伪装或交流的目的。研究表明,变色龙的皮肤具有特殊的多层色素细胞构造,环境或情绪的变化会诱导皮肤肌肉运动,改变皮肤多层色素细胞的分布,进而实现多样化的身体颜色变化。这一有趣的生物体变色现象启发科学家们构建了多种基于高分子薄膜和弹性体的智能仿生软体机器人,这些具有变色功能的伪装机器人在自然环境中表现出类生物体的行为,不易被识别和破坏,因而在海洋探索、生物学研究、环境考察等方面应用前景巨大。相较于高分子薄膜和弹性体,高分子水凝胶具有与生物组织相当的模量及软、湿等特性,可能更加适宜于变色软体机器人的构建。因此,如何通过各向异性高分子水凝胶的组成结构设计,实现驱动与智能荧光色变等功能的协同来构建具有变色功能的水凝胶驱动器,就成为我们格外关注的关键问题。   近年来,中国科学院宁波材料技术与工程研究所智能高分子材料课题组陈涛研究员和路伟副研究员在智能荧光高分子水凝胶的分子设计及材料构建方面开展了大量的基础研究工作(Adv. Funct. Mater. 2019, 1905514; ACS Macro Lett. 2019, 8, 937; Sci. China Mater.2019, 62, 831; ACS Sensors 2018, 3, 2394; Adv. Mater. Technol. 2018, 1800201; J. Phys. Chem. C 2018, 122, 9499; Macromol. Rapid Commun.,2018, 39, 1800648; Macromol. Rapid Commun.2018, 39, 1800130; ACS Appl. Mater. Interfaces 2017, 9, 23884)。基于以上研究,该团队在2018年通过苝酰亚胺功能化荧光高分子水凝胶和氧化石墨烯杂化聚异丙基丙烯酰胺水凝胶功能模块的超分子宏观组装,初步实现了复杂形变和智能荧光性能的协同(Adv. Funct. Mater. 2018, 1704568)。然而,尽管这种高分子驱动器同时兼具复杂变形和“开-关”荧光功能,它却只能发出一种荧光颜色(黄色),远远落后于自然界中的变色龙等可显示丰富多彩肤色变化的生物体。   近日,该团队在Angew. Chem. Int. Ed. 上报道了一种兼具3D复杂形变-智能色变功能的多色荧光高分子水凝胶驱动器(图1),题为“Bioinspired Synergistic Fluorescence-Color Switchable Polymeric Hydrogel Actuator”(DOI: 10.1002/anie.201908437)。在该工作中,研究人员从多色荧光单体分子设计的源头出发,合成了一种含有吡啶羧酸盐配体的单体6APA,其与N-异丙基丙烯酰胺(NIPAM)、甲双叉丙烯酰胺经自由基聚合制备的温敏性高分子水凝胶(PNIPAM-K6APA)的荧光强度很弱,但稀土铕(Eu3+)和铽离子(Tb3+)的分别掺杂会诱导吡啶羧酸盐配体的能量转移,进而发出明亮的红色和绿色荧光,进一步地,可以通过不同比例铕和铽离子与吡啶羧酸盐配体的竞争配位作用的调控来获得红色和绿色相叠加的多色荧光。该荧光水凝胶具有丰富的刺激响应性,酸碱、竞争配位阴/阳离子等的刺激都会改变其荧光颜色(图2)。基于这一智能荧光色变原理,研究人员以温敏性PNIPAM-K6APA为主动层、称量纸为被动层构建了一种各向异性荧光高分子水凝胶驱动器。如图3所示,在碱和温度的交互刺激下,一对分别基于红色荧光Eu-PNIPAM-K6APA和绿色荧光Tb-PNIPAM-K6APA驱动器的仿生变色龙表现出协同的肤色变暗和身姿形变,模仿出变色龙在意欲发动攻击时心理情绪变化诱导的肤色变暗现象;类似地,在铽离子和温度的交互刺激下,基于红色荧光Eu-PNIPAM-K6APA驱动器的仿生变色龙表现出与协同的身姿形变和“红转黄绿”肤色改变,初步模仿出变色龙在环境变化诱导下的皮肤颜色变化多样性(图4)。   在该工作中,研究人员通过各向异性多色荧光高分子水凝胶驱动器的组成结构设计,协同利用竞争配位调控的荧光色变和温度控制的形状改变,制备了一种具有类变色龙行为的高分子水凝胶基软体机器人。尽管现在的变色软体机器人在结构设计和功能展示上还比较粗糙,但这一成功实例证明了变形变色等多功能协同的软体机器人的可行性,为未来多功能软体机器人的开发和应用奠定了基础。   以上工作得到了国家自然科学基金(21774138, 51773215, 51873223)、中国科学院前沿科学重点研究项目(QYZDB-SSW-SLH036)、中国科学院青年创新促进会(2019297, 2017337)、中国科学院海洋新材料与应用技术重点实验室开放基金(2018K02)等项目的资助。